Finding a Way to Test Dark Energy

By Nicole Hemsoth

September 9, 2005

What is the mysterious dark energy that's causing the expansion of the universe to accelerate? Is it some form of Einstein's famous cosmological constant or an exotic repulsive force, dubbed “quintessence,” that could make up as much as three-quarters of the cosmos? Scientists from Lawrence Berkeley National Laboratory and Dartmouth College believe there is a way to find out.

In a paper to be published in Physical Review Letters, physicists Eric Linder of Berkeley Lab and Robert Caldwell of Dartmouth show that physics models of dark energy can be separated into distinct scenarios, which could be used to rule out Einstein's cosmological constant and explain the nature of dark energy. What's more, scientists should be able to determine which of these scenarios is correct with the experiments being planned for the Joint Dark Energy Mission (JDEM), which has been proposed by NASA and the U.S. Department of Energy.

“Scientists have been arguing the question 'how precisely do we need to  measure dark energy in order to know what it is?'” said Linder. “What we  have done in our paper is suggest precision limits for the measurements.  Fortunately, these limits should be within the range of the JDEM  experiments.” 

Linder and Caldwell are members of the DOE-NASA science definition  team for JDEM, which has the responsibility for drawing up the mission's  scientific requirements. Linder is the leader of the theory group for SNAP (SuperNova/Acceleration Probe), one of the proposed vehicles for  carrying out the JDEM mission. Caldwell, a professor of physics and  astronomy at Dartmouth, is one of the originators of the quintessence concept.

In their paper, Linder and Caldwell describe two  scenarios, one they call “thawing” and one they call “freezing,” which point toward distinctly different fates for our permanently expanding universe. Under the thawing scenario, the acceleration of the expansion will gradually decrease and eventually come to a stop, like a car when the driver eases on the gas pedal. Expansion may continue more slowly, or  the universe may even recollapse. Under the freezing scenario, acceleration continues indefinitely, like a car with the gas pedal pushed  to the floor. The universe would become increasingly diffuse, until eventually our galaxy would find itself alone in space.

Either of these two scenarios rules out Einstein's cosmological constant. In their paper, Linder and Caldwell show, for the first time, how to cleanly separate Einstein's idea from other possibilities. Under any scenario, however, dark energy is a force that must be reckoned with.

According to Linder, “Because dark energy makes up about 70 percent of the content  of the universe, it dominates over the matter content. That means dark  energy will govern expansion and, ultimately, determine the fate of the  universe.”

In 1998, two research groups rocked the field of cosmology with their independent announcements that the expansion of the universe is accelerating. By measuring the redshift of light from Type Ia supernovae, deep-space stars that explode with a characteristic energy, teams from the  Supernova Cosmology Project, headquartered at Berkeley Lab, and the High-Z Supernova Search Team, based in Australia, determined the expansion  of the universe is actually accelerating, not decelerating. The unknown force behind this accelerated expansion was given the name “dark energy.”

Prior to the discovery of dark energy, conventional scientific wisdom held  that the Big Bang had resulted in an expansion of the universe that would gradually be slowed by gravity. If the matter content in the universe  provided enough gravity, one day the expansion would stop altogether and the universe would fall back on itself in a Big Crunch. If the gravity from matter was insufficient to completely stop the expansion, the  universe would continue floating apart forever.

“From the announcements in 1998 and subsequent measurements, we now know that the accelerated expansion of the universe did not start until  sometime in the last 10 billion years,” Caldwell said.

Cosmologists are now scrambling to determine what exactly dark energy is. In 1917, Einstein amended his General Theory of Relativity with a cosmological constant, which, if the value was right, would allow the universe to exist in a perfectly balanced, static state. Although history's most famous physicist would later call the addition of this constant his “greatest blunder,” the discovery of dark energy has revived  the idea.

“The cosmological constant was a vacuum energy (the energy of empty space) that kept gravity from pulling the universe in on itself,” said Linder. “A problem with the cosmological constant is that it is constant, with the same energy density, pressure and equation of state over time. Dark energy, however, had to be negligible in the universe's earliest stages; otherwise, the galaxies and all their stars would never have formed.”

For Einstein's cosmological constant to result in the universe we see today, the energy scale would have to be many orders of magnitude smaller than anything else in the universe. While this may be possible, Linder said, it does not seem likely. Enter the concept of “quintessence,” named after the fifth element of the ancient Greeks, in addition to air, earth, fire and water; they believed it to be the force that held the moon and  stars in place.

“Quintessence is a dynamic, time-evolving and spatially dependent form of energy with negative pressure sufficient to drive the accelerating expansion,” said Caldwell. “Whereas the cosmological constant is a very  specific form of energy — vacuum energy — quintessence encompasses a  wide class of possibilities.”

To limit the possibilities for quintessence and provide firm targets for basic tests that would also confirm its candidacy as the source of dark energy, Linder and Caldwell used a scalar field as their model. A scalar field possesses a measure of value, but not direction, for all points in space. With this approach, the authors were able to show quintessence as a scalar field relaxing its potential energy down to a minimum value. Think of a set of springs under tension and exerting a negative pressure that  counteracts the positive pressure of gravity.

“A quintessence scalar field is like a field of springs covering every  point in space, with each spring stretched to a different length,” Linder said. “For Einstein's cosmological constant, each spring would be the same length and motionless.”

Under their thawing scenario, the potential energy of the quintessence field was “frozen” in place until the decreasing material density of an expanding universe gradually released it. In the freezing scenario, the  quintessence field has been rolling toward its minimum potential since the universe underwent inflation, but as it comes to dominate the universe it gradually becomes a constant value.

The SNAP proposal is in research and development by physicists, astronomers, and engineers at Berkeley Lab, in collaboration with colleagues from the University of California at Berkeley and many other institutions; it calls for a three-mirror, two-meter reflecting telescope in  deep-space orbit that would be used to find and measure thousands of Type Ia supernovae each year. These measurements should provide enough information to clearly point toward either the thawing or freezing scenario — or to something else entirely new and unknown.

Said Linder: “If the results from measurements such as those that could be made with SNAP lie outside the thawing or freezing scenarios, then we may have to look beyond quintessence, perhaps to even more exotic physics, such as a modification of Einstein's General Theory of Relativity to explain dark energy.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Software Foundation (HPSF). The announcement was made at the ISC Read more…

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire