Simulating Earthquakes for Science and Society

By Paul Tooby

January 27, 2006

Earthquakes are a fact of life in California. The southern part of the major San Andreas fault, however, has not seen a major earthquake since about 1690, and the accumulated movement may now amount to as much as six meters — setting the stage for an earthquake as large as magnitude 7.7 — the “big one.”

To understand the basic science of earthquakes and to help engineers better prepare for such an event, scientists want to identify which regions are likely to experience the most intense shaking, particularly in the populated sediment-filled basin of Los Angeles and similar areas in Southern California and northern Mexico. This understanding can be used to improve building codes in high-risk areas and to help engineers design safer structures, potentially saving lives and property.

Instantaneous movement in the fault-parallel x direction, 110 seconds after the start of the northwest-moving rupture on the San Andreas Fault near the Salton Sea.But the challenges in modeling earthquakes are daunting. Accurate simulations must span an enormous range of scales, from meters near the earthquake source to hundreds of kilometers across the entire region, and time scales from hundredths of a second — to capture the higher frequencies which have greatest impact on buildings — to hundreds of seconds for the full event. Adding to the challenge, ground motion from earthquake waves is strongly influenced by the complex 3-D subsurface structure of the soil, which is not fully known and scientists can observe only indirectly.

Now, based on previous simulations at the San Diego Supercomputer Center (SDSC), earthquake scientists from the Southern California Earthquake Center/Community Modeling Environment (SCEC/CME) have run enhanced simulations at SDSC using the improved TeraShake 2 earthquake model. The new simulations, which used the Anelastic Wave Model (AWM), a fourth-order finite difference code developed by Kim Olsen, associate professor of geological sciences at San Diego State University (SDSU), are the most realistic yet of where the most intense ground motion may occur in Southern California during a magnitude 7.7 San Andreas Fault earthquake.

An important scientific goal of SCEC scientists including the TeraShake research group is to improve model realism by incorporating more fundamental physics into earthquake simulations. “To make the TeraShake 2 simulations more realistic, we added a new physics-based dynamic rupture component to the simulation, run at very high 100 m resolution, to create the earthquake source description for the San Andreas Fault,” said Steven Day, professor of geological sciences at SDSU.  The dynamic rupture component models friction-based slip on the fault surface. This is more physically realistic than the kinematic source descriptions used previously, which were adapted from recorded earthquake data.

Using the results of the improved rupture simulation developed by Olsen and Day as the earthquake source, the researchers modeled the 3-D velocity throughout the volume and surface of the simulated region. To fully capture this large-scale natural event, the researchers needed to encompass the entire region in their model – a slab 600 kilometers long by 300 kilometers wide and 80 km deep (a volume of more than 14 million cubic kilometers) that includes all major population centers in Southern California and runs from the Ventura Basin, Tehachapi, and the southern San Joaquin Valley in the north, down to Los Angeles, San Diego, out to Catalina Island, and as far as the Mexican cities of Mexicali, Tijuana, and Ensenada in the south.

The highly detailed TeraShake 2 simulation, run at 200 m resolution over the immense volume with some 1.8 billion grid points, ran for four days on 240 processors of the newly-expanded 15.6 Teraflops DataStar supercomputer, requiring a complex choreography of data movement between DataStar, disk, and archival storage. The 10 terabytes of output data is archived in the SCEC Digital Library, managed by the SDSC Storage Resource Broker (SRB) at SDSC, where it is easily available to researchers for further analysis.

These improved simulations are giving scientists new insights into where strong ground motions may occur in the event of such an earthquake, which can be especially intense and long-lasting in sediment-filled basins such as the Los Angeles area.

Two factors have been especially important to this advance in computational science. One is SDSC's focus on large-scale, end-to-end data cyberinfrastructure, with data-oriented resources such as DataStar supported by a General Parallel File System (GPFS) that makes more than a petabyte of online disk available to users, and reliable data archiving with more than six petabytes of HPSS and SAM-QFS tape. One petabyte is one million gigabytes, about 10,000 times the capacity of today's typical PC hard drives.

The second factor in enabling this research is the close, long-term collaboration between SCEC researchers and experts from groups across SDSC in a Strategic Applications Collaboration. “To solve the novel challenges that emerge when scientists run their codes at the largest scales and data sets grow to immense size, we worked closely with the scientists through months of code porting, new feature integration, and optimization,” said SDSC computational scientist Yifeng Cui.

The collaboration incorporated the new, dynamic rupture feature and modifications to speed up the AWM code, and the optimized dynamic TeraShake 2 code can now scale up to 2,048 processors. During and after the run, many other SDSC staff followed up with data movement, application and data support, SAM-QFS and SANergy targeting, SRB support, I/O and GPFS expertise, and overall run management.

SDSC also provided important visualization services to the collaboration, helping SCEC scientists monitor the simulations and find new insights in integrated views of the immense 10 terabyte data set. To produce the visualizations, the researchers used over 30,000 hours on SDSC resources, including 20,000 hours on DataStar alone to create more than 100,000 images. The visualizations also help make the results more understandable to nonspecialists, and dramatic movies of the simulations can be viewed online (see links below).

Another product of the SDSC SAC collaboration with the SCEC scientists is the enhanced TeraShake code that is capable of large-scale runs, maintained at SDSC, which is now available to the U.S. earthquake community for future earthquake simulations.

TeraShake 2 demonstrates SDSC's capabilities as a leading site for end-to-end data cyberinfrastructure, showing how much the capabilities have grown to support large-scale simulations with correspondingly large data challenges.

The SCEC TeraShake 2 project is led by Thomas H. Jordan of the University of Southern California, Jean-Bernard Minster of the Institute of Geophysics and Planetary Physics (IGPP) at SIO/UCSD, Kim Olsen and Steven Day of SDSU, and Reagan Moore of SDSC/UCSD.

Related Links:

The Southern California Earthquake Center (SCEC) – http://www.scec.org/
SCEC Community Modeling Environment – http://www.scec.org/cme/
Quicktime 15 mb – http://visservices.sdsc.edu/projects/scec/terashake/movies/Terashake2.1-volume-Vy-800-map.mov
Windows Media 2 mb – http://visservices.sdsc.edu/projects/scec/terashake/movies/Terashake2.1-volume-Vy-800-map.wmv

This article was provided courtesy of the San Diego Supercomputer Center.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the University of Chicago, leads Chameleon. This innovative projec Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire