IBM Enters Petascale Era with Blue Gene/P

By Michael Feldman

June 29, 2007

This week at the International Supercomputing Conference (ISC) in Dresden, Germany, IBM unveiled its next-generation Blue Gene architecture — Blue Gene/P. The new model is intended for users looking for petaflop-level computing and beyond. Like its Blue Gene/L predecessor, Blue Gene/P is targeted for big science applications and the very highest end of commercial HPC. According to IBM, Blue Gene/P is two and a half times more powerful than the Blue Gene/L generation and requires only slightly more power. A relatively modest two-rack Blue Gene/P configuration that IBM deployed in-house ended up as number 31 on the new Top500 list announced this week.

The previous-generation Blue Gene/L machines represent some of the fastest systems in the world. The Lawrence Livermore system currently holds the top spot on the Top500 list and a number of other Blue Gene/L installations are scattered throughout the list. But this is the end of the line for Blue Gene/L. IBM manufacturing will now switch over to the P line. Blue Gene/L purchases currently in the pipeline represent the last machines of the first generation.

The Blue Gene/P architecture is based on a quad-core PowerPC 450 ASIC chip, where each chip is capable of 13.6 gigaflops. A compute node includes the ASIC chip along with 2 GB of SDRAM DDR2 memory. Thirty-two of these nodes are aggregated onto a board and 32 of the boards are placed in a 6-foot high rack. The result is a 4096-core rack, which provides 13.9 teraflops (peak) of processing power. This represents the smallest Blue Gene/P system you can buy.

Although the original Blue Gene/L was dual-core, it did not implement cache coherency in the hardware. By contrast, Blue Gene/P is designed around cache coherent quad-core chips, so they can be treated as SMP nodes in the same manner as any multicore-based commodity cluster. This makes the new Blue Gene more suitable for multithreaded workloads based on standard software technologies like OpenMP.

Compared to Blue Gene/L, the new generation uses slightly faster PowerPC processors (850 MHz versus 700 MHz) and twice as many cores per chip (4 versus 2). L3 cache has been doubled from 4 MB to 8 MB and main memory per compute node has been quadrupled from 512 MB to 2 GB. Main memory bandwidth has also increased — from 5.6 to 13.6 GB/sec. In addition, the 3-D Torus and Tree networks have been upgraded, essentially more than doubling the bandwidth and cutting latencies in half. The increased capabilities provide a 2.4x increase in performance over Blue Gene/L, using roughly the same floor space and slightly more power.

A single 13.9-teraflop Blue Gene/P rack draws just 40 kilowatts, yielding 0.35 gigaflops/watt — possibly the best performance/watt metric of any general-purpose computing system on the planet. SiCortex’s MIPS-based cluster systems come close at around 0.32 gigaflops/watt. For comparison, Blue Gene/L offers a lower, but very respectable, 0.23 gigaflops/watt. Most x86-based high performance computing systems are an order of magnitude lower than that. As users build Blue Gene/P systems that scale to hundreds of teraflops and beyond, power efficiencies become even more critical.

And while not every customer will use Blue Gene/P to build petaflop systems, IBM anticipates at least one customer will put enough Blue Gene/P racks together to reach a sustained (Linpack) petaflop as early as next year. Apparently IBM has a few prospects that are considering purchasing the 80 or so Blue Gene/P racks required to build a such a machine. The architecture is actually designed to scale up 256 racks, which would come close to three Linpack petaflops. However, there are few customers who would know what to do with such power, and the cost would probably be prohibitive even for that select group. IBM realizes that, although there are many HPC customers with computational problems bigger than their machines, there are only so many organizations that have the right combination of money, workload, and software experience that’s required to take advantage of machines like Blue Gene/P.

In any case, the Blue Gene/P sales pipeline is already filling up. The U.S. Dept. of Energy’s Argonne National Laboratory, Argonne, Ill., will deploy the first Blue Gene/P system this fall. Argonne’s initial Blue Gene/P system will be a 114-teraflop machine, and the lab is on track to eventually install about half a petaflop. Argonne currently has a Blue Gene/L system and will continue to operate that machine through at least 2008.

Explaining the lab’s motivation to increase their Blue Gene investment, Ray Bair, Division Director for the Argonne Leadership Class Facility said: “Blue Gene has been a resounding success for scientific computing since its inception, both for DOE’s INCITE program at Argonne National Laboratory and in diverse science programs at institutions around the world. The breadth and scale of science problems that can be addressed with Blue Gene was another important factor. IBM designed Blue Gene/P with petascale scientific computing in mind, making performance and functionality improvements from top to bottom while preserving Blue Gene’s extraordinary balance.”

Other installations are being planned as well. In Germany, the Max Planck Society and Forschungszentrum Jülich are scheduled to begin installing Blue Gene/P systems in late 2007. Other Blue Gene/P deployments are being planned by Stony Brook University and Brookhaven National Laboratory in Upton, N.Y., and the Science and Technology Facilities Council, Daresbury Laboratory in Cheshire, England.

Since the public sector is the principal source of the money for capability-class supercomputers, Blue Gene systems tend to live almost exclusively in government labs and facilities. IBM has courted Wall Street, but has not closed any Blue Gene accounts there. With the increased emphasis on power and cooling costs, IBM is hoping that a tipping point will occur at some point and commercial entities will consider Blue Gene supercomputers as cost-effective alternatives to large HPC cluster systems.

What IBM is really counting on is that a good proportion of the installed Blue Gene/L base will upgrade to Blue Gene/P. Applications should port rather easily, requiring only a recompilation. Unfortunately, the two architectures won’t interoperate; a Blue Gene/P system won’t be able to bolt onto a Blue Gene/L rack to accelerate the original system. IBM does, however, offer a trade-in program for customers looking to retire their older models and get some credit against a Blue Gene/P purchase.

Because of the scale of the architecture and the extended lifetimes of these types of supercomputers, IBM put a lot of thought into reliability and system robustness. Efficient cooling design, soldered memory, and a low number of moving parts supports a low mean time between failure (MTBF) rate. From the feedback they received from Lawrence Livermore National Laboratory, it turned out that the lab’s Blue Gene/L system had an order of magnitude better MTBF than commodity-based systems installed there. When added to the cost savings realized from the system’s power efficiency, IBM offers a fairly compelling TCO story.

This message is tougher to sell in the commercial HPC space, where customers are still very sensitive to initial acquisition costs. According to Herb Schultz, Deep Computing Marketing Manager, IBM is aiming for around ten cents per megaflop for the new Blue Gene systems, which he feels is price competitive with other non-discounted HPC systems in the industry. But with the smallest installation being a 14-teraflop system, customers are looking at $1.4 million to join the Blue Gene/P club.

“If we can get customers to look more broadly at the overall system costs — the power and cooling bill over three or four years and the costs associated with system downtime — we think Blue Gene/P looks really good,” said Schultz. “So we’re trying to get people to look beyond the initial acquisition cost and focus on the total cost of operating the machine over its lifetime.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire