Pico Computing Takes Scale-Up Approach to FPGAs

By Michael Feldman

February 17, 2010

As high performance computing vendors polish their server and workstation portfolios with the latest multicore CPU and GPGPU wonders, Pico Computing is quietly making inroads into the HPC application space with its FPGA-based platforms. By picking the spots where reconfigurable computing makes the most sense, the company is looking to leverage its scalable FPGA technology to greatest effect.

Seattle-based Pico was formed in November 2004 by founder Robert Trout. Using internal funding, the startup spent a couple of years on product development and subsequently started bringing its Xilinx-based FPGA computing platforms to market in 2007 and 2008. True to its name, Pico is a small company, with a staff of a dozen or so full-timers. As a private entity, they are not obliged to release financial results, but according to Mark Hur, Pico’s director of sales and marketing, the company is profitable today.

The company currently offers a range of platforms from a single FPGA card to large-scale FPGA “clusters” that contain over 100 of the devices in a 4U chassis. The company’s flagship E-16 Virtex-5 FPGA card was released in 2007. “To this day, that’s been the most successful product we’ve launched thus far,” says Hur. According to him, there are now multiple clusters of E-16s in the marketplace.

Recently, Pico demonstrated a password recovery system using a cluster of 77 Virtex-5 FPGAs, housed in a 4U enclosure and consuming less than 900 watts of power. According to the company, the system provides the computational equivalent of about 1,000 dual-core CPUs (Intel Core 2 Duo) for different recovery algorithms, specifically FileVault, Wi-Fi Protected Access (WPA), and Wired Equivalent Privacy (WEP). In fact, for the WEP algorithm, the Pico cluster delivered a 4,620-fold performance improvement and a 1,000-fold decrease in power consumption compared to the dual-core CPU implementation.

That level of performance and compute density for cryptography applications helps explain why Pico’s most beloved market is data security. The three-letter federal agencies in the US government are the main customers here, and they buy both off-the-shelf and custom products from the company. Security still represents the majority of Pico’s business today, although you’re not likely to see an NSA code cracking case study on the company’s Web site anytime soon.

Other favorite application areas for Pico include bioinformatics, financial analytics, image processing, and certain other types of scientific computing. The reason that FPGAs are so adept at these types of applications, from both a performance and power consumption point of view, is their ability to morph their hardware structures to match operators and data types for a given algorithm. This is especially true when the underlying algorithms are not based on typical integer or floating point data types.

In genomics applications, for example, a lot of algorithms are based on the four fundamental nucleoside bases (adenine, thymine, guanine, cytosine) that make up RNA and DNA. Thus a nucleoside data type would only be two bits wide. And unlike CPUs and GPUs, you can map FPGA resources to match that data size exactly. “You don’t need full 32-bit or 64-bit data paths and operators,” explains David Pellerin, Pico’s director of strategic marketing. “It’s wasteful.” That’s why some applications that get 100-fold acceleration from a GPU can get 1,000-fold from an FPGA, when compared to a CPU.

Pellerin, who used to be the chief technology officer at Impulse Accelerated Technologies, the makers of FPGA programming language Impulse C, was brought aboard Pico to energize the company’s marketing story and get behind some of the new product rollouts they’ve launched over the past few months. The newest offerings are based on the latest Spartan-6 and Virtex-6 hardware from FPGA-maker Xilinx. Pico’s most recent addition, the M-series modules, allows customers to construct standard-sized PCIe cards with up to 12 FPGAs.

Pico’s flagship E-series cards, on the other hand, plug into PCIe slots on a desktop system. But like the M-series, they can also be scaled into multiple FPGA configurations to build a computationally-dense FPGA cluster inside a single compute node. For HPC workloads especially, up to seven of the latest E-18 cards can be plugged into a PCIe carrier card, and multiple carrier cards can be installed into a 4U rack-mounted chassis. The idea is for customers to begin development with a single card plugged into a laptop or desktop, and when it’s time to deploy the full configuration, multiple cards can be plugged into PCIe backplane and installed in rack-mounted appliance or server.

From the software side, Pico has a consistent set of APIs that apply across its entire product set, and these interfaces can be accessed from either low-level Verilog code, or an FPGA-friendly C language, like Impulse C. Most of Pico’s customers writing cryptography apps use Verilog, but Impulse C tends to be more popular in bioinformatics and more traditional HPC codes.

Unlike other FPGA board makers, where one or two devices is matched to a host processor, Pico builds modular devices and backplanes such that as many as 177 FPGAs can be connected to a single CPU. That level of scalability means customers can squeeze a huge amount of computing hardware into very small enclosures. Since the core of most of these algorithms is just highly parallelized bit arithmetic, the CPU’s role is limited to driving the sequential part of the application. “For many applications, certainly in areas like cryptography and bioinformatics, the more FPGAs you can throw at the problem, the better it’s going to be,” says Pellerin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire