MATLAB Adds GPGPU Support

By Michael Feldman

September 20, 2010

MATLAB users with a taste for GPU computing now have a perfect reason to move up to the latest version. Release R2010b adds native GPGPU support that allows user to harness NVIDIA graphics processors for engineering and scientific computing. The new capability is provided within the Parallel Computing Toolbox and Distributed Computing Server.

MathWorks released R2010b in early September, and is taking advantage of this week’s NVIDIA GPU Technology Conference in San Jose, California, to demonstrate the new GPU computing support. Early adopters, though, have already had a chance to check out the software. A beta version of the GPGPU support was unveiled at SC09 last November, attracting hundreds of customers who wanted to give the new capabilities a whirl.

According to Silvina Grad-Freilich, senior manager for Parallel Computing at MathWorks, that was about five or six times more beta registrations than they were anticipating. They also were somewhat surprised to see such a wide range of users sign up. “We were expecting to receive requests from people in very defined areas like finance or academia,” said Grad-Freilich. “Interestingly enough, customers from all of the industries that we sell to registered for the beta.”

The initial support for GPUs is confined to NVIDIA gear, and only for those CUDA-supported devices with a compute capability of 1.3 or higher. In the Tesla product line, that equates to the 10-series and 20-series (Fermi) GPUs. The rationale for limiting support to the late-model CUDA GPUs had to do with lack of double-precision floating point support and IEEE compliance in pre-1.3 CUDA GPUs. The MATLAB team felt both were required to make GPU computing a worthwhile capability for its customer base of scientists, engineers, and quantitative analysts.

Access to the GPU can be accomplished in two ways: via invocation of existing CUDA kernels and through high-level programming support that has been incorporated into MATLAB. Using the first method, users who are ahead of the curve GPGPU-wise will be able to leverage already-developed CUDA software, allowing them to call CUDA kernels inside MATLAB applications. But according to Grad-Freilich, they expect most MATLAB users will want to employ the new high-level support to get access to the graphics processors.

For native MATLAB GPU support, code changes to existing apps should be relatively minor. At minimum, the developer needs to invoke one call (gpuArray) to transfer the data array to the GPU and another call (gather) to transfer it back to the CPU host. The computations in between can use existing MATLAB built-in functions that have been overloaded to work on GPU arrays. GPUs can also be accessed with custom MATLAB functions provided by the user, simply by plugging the GPU array parameters into the function invocation. In the initial release, MathWorks has overloaded over 100 of the most commonly-used mathematical functions for GPU computing. Here is a simple GPU computing code snippet:

>> A = someArray(1000, 1000);
>> G = gpuArray(A); % Transfer data to GPU memory

>> F = fft(G); % computation on the GPU
>> x = Gb; % computation on the GPU

>> z = gather(x); % Bring back into the MATLAB host

The new support also includes the ability to distribute an application across a GPU cluster or a multi-GPU workstation, using MATLAB’s parallel for loop (parfor). In this scenario, computations in the parallelized loop are executed on multiple GPUs in the user’s setup. Because of the abstraction of MATLAB parallelization, the source code is portable across different types of multi-GPU configurations — workstations, clusters and grids.

By offering this simple interface, MATLAB is able to hide all the gritty GPU details of hardware initialization, data transfer and memory management from the user. And since the average MATLAB user is a domain specialist rather than a professional C/C++ programmer, this allows them to remain in their software comfort zone. On the other hand, many MATLAB apps are intended only for prototyping. When they go into production, they may end up as professionally-developed C/C++ programs, the idea being to improve performance.

One of the nice outcomes of GPU acceleration is that some MATLAB codes can be made fast enough for production deployment. The speedups for some algorithms are on par with other GPGPU accelerated apps. In MathWorks’ own tests, they were able to demonstrate a 50-fold computational speedup on a GPU versus the CPU implementation. In this case, the program was a spectrogram application using FFT functions, and executed on a 16-node GPU cluster.

However, when the CPU-to-GPU data transfer time was factored in, the measured speedup was just five-fold. That still represents very respectable acceleration, but it illustrated the performance penalty of the data transfers back and forth across the PCIe link (as well as, in this case, the GigE network of the cluster). Perhaps the more salient metric is the number of FFTs that can be managed by the different processors. The CPUs can only process a handful of FFT functions at a time, while the GPUs can handle millions, giving the GPU implementation much greater scalability

Although GPGPU is a new feature for MATLAB, there is already a lot of capability included for users who happen to have access to the newer NVIDIA hardware. The intention is to grow this functionality across the next several releases. To get a more detailed look and what’s available today, check out the MATLAB GPU Support web page.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire