Supercomputing Meets Social Media

By Michael Feldman

October 21, 2010

In supercomputing these days, it’s usually the big science applications (astrophysics, climate simulations, earthquake predictions and so on) that seem to garner the most attention. But a new area is quickly emerging onto the HPC scene under the general category of informatics or data-intensive computing. To be sure, informatics is not new at all, but its significance to the HPC realm is growing, mainly due to emerging application areas like cybersecurity, bioinformatics, and social networking.

The rise of social media, in particular, is injecting enormous amounts of data into the global information stream. Making sense of it with conventional computers and software is nearly impossible. With that in mind, a story in MIT Technology Review about using a supercomputer to analyze Twitter data caught my attention. In this case, the supercomputer was a Cray XMT machine operated by the DOE at Pacific Northwest National Lab (PNNL) as part of their CASS-MT infrastructure.

The application software used to drive this analysis was GraphCT, developed by researchers at Georgia Tech in collaboration with the PNNL folks. GraphCT is short for Graph Characterization Toolkit, and is designed to analyze really massive graph structures, like for example, the type of data that makes up social networks such as Twitter.

For those of you who have been hiding under a rock for the last few years, Twitter is a social media site for exchanging 140-character microblogs, aka tweets. As of April 2010, there were over 105 million registered users, generating an average of 55 million tweets a day. The purpose of Twitter is, of course… well, nobody knows for sure. But it does represent an amazing snapshot of what is capturing the attention of Web-connected humans on any given day. If only one could make sense of it.

Counting tweets or even searching them is a pretty simple task for a computer, but sifting out the Twitter leaders from the followers and figuring out the access patterns is a lot trickier. That’s where GraphCT and Cray supercomputing comes in.

GraphCT is able to map the Twitter network data to a graph, and make use of certain metrics to assign importance to the user interactions. It measures something called “betweenness centrality,” to rank the significance of tweeters.

Because of the size of the Twitter data and the highly multithreaded nature of the GraphCT software, the researchers couldn’t rely on the vanilla Web servers that make up the Internet itself, or even conventional HPC computing gear. Fine-grained parallelism plus sparse memory access patterns necessitated a large-scale, global address space machine, built to tolerate high memory latency.

The Cray XMT, a proprietary SMP-type supercomputer is such a machine, and is in fact specifically designed for this application profile. I suspect the reason you don’t hear more about the XMT is because most of them are probably deployed at those top secret three-letter government agencies, where data mining and analysis are job one.

The XMT at PNNL is a 128-processor system with 1 terabyte of memory. The distinguishing characteristic of this architecture is that each custom “Threadstorm” processor is capable of managing up to 128 threads simultaneously. Tolerance for high memory latencies is supported by efficient management of thread context at the hardware level.

The system’s 1 TB of global RAM is enough to hold more than 4 billion vertices and 34 billion edges of a graph. To put that in perspective, one of the Twitter datasets from September 2009 was encapsulated in 735 thousand vertices and 1 million edges, requiring only about 30 MB of memory. Applying the GraphCT analysis, the data required less than 10 seconds to process. The researchers estimated that a much larger Twitter dataset of 61.6 million vertices and 1.47 billion edges would require only 105 minutes.

When the Georgia Tech and PNNL researchers ran the numbers, they found that relatively few Twitter accounts were responsible for a disproportionate amount of the traffic, at least on the particular datasets they analyzed. The largest dataset was made up of all public tweets from September 20th to 25th in 2009, containing the hashtag #atlflood (to capture tweets about the Atlanta flood event). In this case, at least, the most influential tweets originated with a few major media and government outlets.

We’re likely to be hearing more about the graph applications in HPC in the near future. Data sets and data streams are outpacing the capabilities of conventional computers, and demand for digesting all these random bytes is building rapidly. Since the optimal architectures for this scale of data-intensive processing is apt to be quite different than that of conventional HPC platforms (which tend to be optimized for compute-intensive science codes), this could spur a lot more diversity in supercomputer designs.

To that end, a new group called the Graph 500 has developed a benchmark aimed at this category of applications, and intends to maintain a list of the top 500 most performant graph-capable systems. The first Graph 500 list is scheduled to be released at the upcoming Supercomputing Conference (SC10) in New Orleans next month.

In the meantime, if you’re interested in giving GraphCT a whirl, a pre-1.0 release of the software can be downloaded for free from the Georgia Tech website. You’ll just need a spare Cray XMT or POSIX-compliant machine to run it on.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire