IBM Revs Power7 Server Lineup

By Michael Feldman

April 12, 2011

Watson’s decisive win over two of Jeopardy’s top champions on national television earlier this year could turn out to be the most effective infomercial in the history of IT. Capitalizing on that accomplishment, IBM is working hard to highlight the supercomputing technology at every opportunity, including this week’s rollout of new and improved Power7-based servers.

The Power7, of course, was the server chip behind Watson’s game-winning performance in February, and will be the CPU that powers NCSA’s 10-petaflop Blue Waters supercomputer later this year. Although IBM employs Intel Xeon and AMD Opteron processors for its X series servers, the company seems to reserve its greatest enthusiasm for its home-grown Power7 and its associated Power-based rackmount boxes and blades. The latest offerings announced this week include an expanded Power7 blade lineup and speedier CPUs for its Power 750 and 755 servers.

Both the 750 and the 755 are four-socket Power7 servers that were introduced last year. The 750 is built for database serving and general enterprise consolidation/virtualization, while the InfiniBand-equipped 755 is aimed specifically at HPC users. The additional options on the 750 include new four-core and six-core Power7 CPUs running at 3.7 GHz, and two new eight-core Power7s running at 3.2 GHz and 3.6 GHz, respectively. The Power 755, which used to come only with 3.3 GHz chips, is now being outfitted with 3.6 GHz Power7s.

Why they didn’t offer an option for the faster 3.7 GHz Power7s on the Power 755 is a little mysterious. It seems like there would be some interest by HPC users that needed faster threads and a higher memory-to-compute ratio on certain applications.

In the case of the new Power7 blades — the PS703 and PS704 — IBM has actually opted for slower processors. The PS703 is a two-socket (16-core) single-wide blade that substitutes 2.4 GHz Power7 CPUs for the corresponding 3.0 GHz parts in the existing two-socket 16-core PS702. The difference is that the PS702 is a double-wide blade, so presumably the single-wide PS703 could only accommodate the slower, cooler chips in its denser form factor. The PS704 essentially doubles up on the PS703 offering four eight-core Power7 processors, again at 2.4 GHz, in a double-wide blade.

Apparently, the rationale is to offer denser and more scaled-out blades, even at the expense of single-thread performance. According to IBM, the PS704 delivers 60 percent more performance with twice the number of cores, but uses the same amount of space and energy as the older PS702. Cost of the new blades was not specified, but since the Power7 chips are not cheap (even lesser-clocked parts), customers will undoubtedly pay for the privilege of doubling up on their core count.

According to the IBM press release, the University of Massachusetts-Dartmouth is using two Power7 blades (type unspecified) to study the effect of gravitational waves on black holes. According to Gaurav Khanna, professor of physics at UMass-Dartmouth, calculations based on Einstein’s theory of relativity that used to take a month on an 2.5 GHz Xeon-based system can now be executed in less than a week. On this particular application, the Dartmouth team realized an eight-fold performance boost with the Power7 hardware.

It’s not all about Power7 though. In the same announcement this week, IBM also unveiled upgrades to its x86 server lineup, including a new InfiniBand solution for its Intelligent Cluster system (with a built-in Ethernet gateway for high frequency trading work), a 10GbE solution for HPC using BLADE Network Technologies’ RackSwitch, and new platforms refreshed with the latest Intel Xeon E7 (Westmere EX) processors.

IBM’s embrace of Xeons, and E7 in particular, is worth noting. Intel is increasingly positioning its multi-socket Xeons as cost-effective alternatives for the traditionally RISC-based “mission-critical” application space. That pits the Xeon E7 CPUs against Oracle’s Sparc processor and IBM’s Power7, as well as, ironically, Intel’s own Itanium chip.

Intel claimed that an E7 4800-based server matched integer throughput performance of a Power 750 server at about one fifth the cost. Given the Westmere architecture can execute only four floating point (FP) operations per clock cycle to the Power7’s eight, Intel was careful not to claim that its latest Xeons were better than Power7 at FP throughput. On top of that, the IBM chip delivers about four times the memory bandwidth as the latest offerings from Intel. For raw computational horsepower, the Power CPUs still outrun the Xeons.

Where Intel has managed to establish some headway is memory capacity. The E7-4800 CPUs will support up to 2 TB of DRAM in a four-socket setup, while the Power 750 and 755 top out at 512 GB and 256 GB, respectively. That’s a significant edge, especially for analytics workloads that rely on terabyte-sized in-memory datasets.

Ironically, IBM’s super-sized memory solution for big data analytics is provided by its Xeon-based eX5 servers (x3850 X5 and x3950 X5), which were introduced in March 2010. The technology uses a special memory expansion unit, known as the MAX5, which connects the extra RAM to the Xeon servers via QPI cables. The MAX5 adds an extra 32 DIMMs to the 64 DIMMs in the four-socket server, which means a system topped out with 16 GB DIMMs could access 1.5 TB of global memory. Since these boxes now support the new E7 Xeons, and with them, 32 GB DIMMs, maximum memory has doubled to 3 TB per server — the same as in IBM’s Z series mainframe.

For the time being, IBM seems content to let its x86 servers carry the big memory banner. At some point, the company may ramp up capacities on the Power servers, as long as it can justify the application demand from its customers. In the meantime, neither Intel nor IBM is likely to get too vocal about the other architecture’s shortcomings.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire