Cray Parlays Supercomputing Technology Into Big Data Appliance

By Michael Feldman

March 1, 2012

For the first time in its history, Cray has built something other than a supercomputer. On Wednesday, the company’s newly hatched YarcData division launched “uRiKA,” a hardware-software solution aimed at real-time knowledge discovery with terascale-sized data sets. The system is designed to serve businesses and government agencies that need to do high-end analytics in areas as diverse as social networking, financial management, healthcare, supply chain management, and national security.

As befits Cray’s MO, their target market for uRiKA, (pronounced Eureka) is slanted toward the cutting edge. It uses a graph-based data approach to do interactive analytics with large, complex, and often dynamic data sets. “We are not trying to be everything for everybody,” says YarcData general manager Arvind Parthasarathi.

Unlike Hadoop cluster implementations, which parallelizes queries across large cluster farms, uRiKA is a monolithic system with a lots of shared memory and massively multithreading processing. The supercomputer-style architecture allows uRiKA to load entire data sets into RAM and process them with hundreds or even thousands of threads. The idea is the avoid the performance penalty of dividing the database into pieces and processing it across disparate memory spaces. In such an environment, if a piece of a query on one node needs to talk to another piece on another node, communication has to be initiated across the network, which can be 100 times slower than a memory access.

The underlying hardware for uRiKA is Cray’s second generation XMT (previously known as XMT-2), which the company’s professional services group has been cranking on for the past three years. According to Shoaib Mufti, YarcData’s VP of Research & Development, the YarcData appliance repurposes the XT5 supercomputer infrastructure, including the AMD-style socket and SeaStar2 interconnect. Unlike the Opteron-powered XT5 though, uRiKA uses Cray’s latest custom-built Threadstorm processor, which supports 128 threads per chip and a memory reach of 512 TB. Processors and memory can be scaled independently, say Mufti.

Further boosting performance is the Threadstorm’s ability to support very fine-grained synchronization to hide latencies across threads. Merv Adrian, Research VP, of Information Management, at Gartner thinks that uRiKA hardware will be able to operate at speeds typical database appliances can’t match. “Processors will not wait on disk I/O, or even typical memory latency,” he says adding that the combo of hardware and software on uRiKA will “allow the company to target different, very challenging use cases.”

Up to 8,000 processors can be loaded on a single system, which would allow an application to scale to over a million threads. Most systems won’t approach anything of that size, though. “Our HPC customers tend to have a lot of processors,” says Mufti. “Here the customers we’re targeting tend to need a lot of memory.” That’s because the data sets YarcData has in mind are things like social media databases, financial asset portfolios, and genomic maps that span entire populations.

More to the point, uRiKA is designed to analyze graphs rather than simple tabular databases. A graph, one of the fundamental data abstractions in computer science, is basically a structure whose objects are linked together by some relationship. It is especially suited to structures like website links, social networks, and genetic maps — essentially any data set where the relationships between the objects are as important as the objects themselves.

This type of application exists further up the analytics food change than most business intelligence or data mining applications. In general, a lot of these more traditional applications involve searching for particular items or deriving simple relationships. The YarcData technology is focused on relationship discovery. And since it’s uses graph structures, the system can support graph-based reasoning and deductions to uncover new relationships.

A typical example is pattern-based queries — does x resemble y? This might not lead to a definitive answer, but will provide a range of possibilities, which can then be further refined. So, for example, one of the YarcData’s early customers is a government agency that is interested in finding “persons of interest.” They maintain profiles of terrorists, criminals or other ne’er-do-wells, and are using uRiKA to search for patterns of specific behaviors and activities. A credit card company could use the same basic algorithms to search for fraudulent transactions.

YarcData uses the term “relationship analytics” to describe this approach. While that might sound a bit Oprah-ish, it certainly emphasizes the importance of extracting knowledge from how the objects are connected rather than just their content. This is not to be confused with relational databases, which are organized in tabular form and use simpler forms of querying.

In fact, according to YarcData’s Parthasarathi, relational databases are not well suited to the kinds of large-scale, real-time data analysis uRiKA is designed for. He says it’s possible to shoehorn these applications into a relational databases using more traditional RDBMS tools, but the model just doesn’t scale very well as the data and relationship complexities grow. Especially if you’re looking to interact with the data in real time, it just takes too long, says Parthasarathi.

Parthasarathi also argues that traditional in-memory database platforms just don’t have enough memory to do graph problems. A single server might be able to be outfitted with a few terabytes, but once the data size grows beyond that, you have to start fetching bytes from external storage. And since graph analytics is non-deterministic, there’s no way to figure out which data should be pre-fetched or cached for a given query.

Being able to swallow an entire graph into memory is uRiKA’s biggest advantage over other architectures, but the system is also capable of ingesting data from secondary storage. Many of applications require this since their data is often very dynamic in nature (think of a financial trading system where asset values are constantly in motion). To deal meet that need, uRiKA offers a high performance storage subsystem that can deliver transfer rates of up to 350 TB/hour.

After data is ingested, it needs to be converted to an internal format called RDF, or Resource Description Framework (in case you were wondering, uRiKA stands for Universal RDF Integration Knowledge Appliance), an industry standard graph format for representing information in the Web. According to Mufti, they are providing tools for RDF data conversion and are also laying the groundwork for a standards-based software that allows for third-party conversion tools.

Industry standard is a common theme here. uRiKA’s software internals include SUSE Linux, Java, Apache, WS02, Google Gadgets, and Relfinder. That stack of interfaces allows users to write or port analytics applications to the platform without having to come up with a uRiKA-specific implementation. So Java, J2EE, SPARQL, and Gadget apps are all fair game. YarcData thinks this will be key to encouraging third-party developers to build applications on top of the system, since it doesn’t require them to use a whole new programming language or API.

The announcement this week pointed to five initial uRiKA customers. Besides the unnamed government agency mentioned previously, early adopters include the Institute of Systems Biology, which is targeting it for drug discovery; Noblis, which is engaged with various US government agencies to help develop a range graph database applications on the platform; the Swiss National Supercomputing Center (CSCS), which is using the system for scientific data analysis; and the Mayo Clinic, which intends to use uRiKA to pattern-match patients in order to optimize treatment regimes.

The latter application is reminiscent of IBM Watson’s work at Wellpoint, where the goal is to use the DeepQA expert system technology to suggest patient diagnosis and treatment options for doctors. In Watson’s case, the hardware and software architecture are completely different from that of uRiKA, but the level of analytics is of the same order. Like IBM, Cray is looking to establish its analytics technology across multiple verticals. In the future, YarcData intends to offer appliances with integrated software that targets specific application domains, like drug discovery, patient matching, and event-based trading.

Pricing on uRiKA configurations has not be made public, but according to Parthasarathi, a low-end setup will cost in the low hundreds of thousands of dollars. That probably corresponds to their baseline configuration of 16 Threadstorm processors and half a terabyte of memory. Additional memory and/or processors could easily push that into the million-dollar range, but considering there are no other systems on the market that sport terascale graph-based analytics, that could end up being a bargain.

Related articles

Cray Opens Doors on Big Data Developments

Can Supercomputing Help Cure Health Care?

Cray Pushes XMT Supercomputer Into the Limelight

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of what it is like to orbit and enter a black hole. And yes, it c Read more…

2024 Winter Classic: Meet the Mentors Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the mentor interviews and placed them in this single page round-up. Meet the HPE Mentors The latest installment of the 2024 Winter Classic Studio Update S Read more…

2024 Winter Classic: The Complete Team Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the teams and placed them in this single page round-up. Meet Team Lobo This is the other team from University of New Mexico, since there are two, right? T Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hopes to fill a big software gap with an agreement to acquire R Read more…

2024 Winter Classic: Oak Ridge Score Reveal

May 5, 2024

It’s time to reveal the results from the Oak Ridge competition module, well, it’s actually well past time. My day job and travel schedule have put me way behind, but I am dedicated to getting all this great content o Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Leading Solution Providers

Contributors

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire