LLNL Seeks Big Data System Balance with Catalyst

By Nicole Hemsoth

November 4, 2013

This morning Lawrence Livermore National Lab (LLNL) announced a new, purpose-built system designed to tackle specific data-intensive problems using some unique approaches to addressing I/O issues for key “big data” applications in bioinformatics and beyond.

The new Cray CS300 324-node system, dubbed Catalyst, will be bestowed with its inaugural applications sometime in December. Delivered in October, the 150 teraflop cluster sports some notable specs, which LLNL and Intel have commented on in detail below.

324 total nodes (128 GB DRAM)
150 TFlops
304 compute nodes (128 GB DRAM and 800GB NVRAM per node)
12 Lustre router nodes (128 GB DRAM and 3,200GB NVRAM per node)
2 Login nodes (128 GB DRAM) – 2 Management nodes (128 GB DRAM)
Processors – Intel Xeon processor E5-2695v2 (12 cores, 2.4Ghz)
NVRAM – Intel SSD 910 Series (800GB, 1/2 Height PCIe 2.0, 25nm, MLC)
Fabrics – Intel TrueScale Fabric (QDR-80)
Storage Software – Intel Lustre, Livermore’s DIMMAP (Data Intensive MMAP) and SCR (Scalable Checkpoint Restart)
One thing that might pop out immediately about these configuration details is that some unique choices have been made in the name of enhancing I/O and overall system balance. The 12-core processor choice, the use of QDR-80, and NVRAM all point to some serious thought about balancing architecture to the requirements of emerging classes of “big data” applications.

As one might imagine scanning the specs list, the spend here is not insignificant, but for a lab that’s focused on HPC, the real thrust of the investment is in the interconnect and I/O tooling versus sheer processing horsepower.

According to Matt Leininger, Deputy of Advanced Technology Projects at Lawrence Livermore National Lab, the combination of non-volatile memory, the latest Intel processors and special focus on the interconnect create the perfect storm for certain data-intensive applications, including those in bioinformatics, as well as for graph analytics and analyzing HPC simulation data.

One of the keys to the system’s data-intensive focus is the choice to use NVRAM in a novel way using some custom-developed technology. LLNL has a number of smaller flash-based clusters that they’ve been tweaking in terms of application middleware or at the OS level so that they can take advantage of NVRAM. During their exploration, they started looking at possible alternatives to the standard MMAP to allow applications to access the NVRAM as if it was actual DRAM memory. The result is their own Data-Intensive MMAP (DIMMAP) which handles the intelligence of the caching process and outshines Linux MMAP.

Leininger pointed to a bioinformatics application that had scaling problems. It now uses their DIMMAP technology on the backend to load large databases into NVRAM, enabling a new set of analytical options that weren’t possible before (or required reads and writes from disk, which killed performance). They have already been able to demo the success of DIMMAP on a smaller research cluster and the team is looking forward to taking advantage of Catalayst.

Mark Seager, CTO of Technical Computing at Intel, these choices push the relatively small Catalyst into 60 million IOPS territory. As he explained, “These devices are in the range of 150-200k IOPS per device and Catalyst has one on every node, so there’s 300 of them on compute nodes—and three on the buffer nodes. The bandwidth in aggregate out of these flash devices is comparable to what’s on the Sequoia system. They have a half terabyte per second of IO bandwidth out of Sequoia to a Luster parallel file system and we’ll have a half terabyte per second at these IOPS rates to these local flash drives on catalyst at a fraction of the cost. That’s a game changer.”

The other “game changer” for Livermore is hopping the single-rail barrier. As Leiniger noted, LLNL has been a TrueScale QDR shop for several years, but this system marks a new phase in that usage with their shift into dual-rail. With a typical cluster, if there’s one HAD it’s directly connected to one socket and while network performance off that one is great, when you communicate to the other, the extra hops sling a performance hit. As Leininger said, “dual rail offers more balanced performance and we expect that the dual rail QDR will be as good or better than any other technology on the market.”

According to Seager, “Even though EDR is faster in terms of the transmission rate per channel, the fact that we have two QDR channels in aggregate means there’s a lot more bandwidth coming off the node than with EDR. Since the TrueScale fabric does most the processing in software o the cores, as you go with a highly parallel processor, it’s possible to scale much better with one MPI task per core.”

Seager continued pointing out that even though while not all the bandwidth is available per channel, this is not really the issue because it’s not really used that way. “You never use it with one MPI task or one processor trying to use the whole channel. Typically, all of the MPI tasks on the node are all trying to use the interface and it’s really that aggregate throughput.”

Leininger said that this is an ideal configuration as they have several PCIe flash cards on the gateway nodes, which are separated and attached to PCIe directly. This means it’s possible to directly from the adapter to the processor without having to transfer across QPI. “It’s well balanced in terms of bandwidth of PCIe flash and the QDR interconnect,” he concluded.

One of the reasons why Intel is interested in this configuration is that they’re looking at how the usage of the system will evolve around LLNL’s emerging data intensive computing model. As Seager said, “there are specific apps that have been targeted but we’re also looking at how, once people start looking at this architecture differently, they’ll come up with new use models to help us learn what the next generation of applications will look like.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire