The In-Memory Key to Real-Time Analysis

By Dr. William Bain

March 6, 2014

Real-time analytics offers enterprises the ability to examine “live,” fast-changing data within operational systems and obtain feedback in milliseconds to seconds. For example, a hedge fund in a financial services organization can track the effect of market fluctuations on its portfolios (“strategies”) of long and short equity positions in various market areas (high tech, real estate, etc.) and immediately identify strategies requiring rebalancing. An e-commerce company can reconcile orders and inventory in real time to avoid a shortfall in inventory and ensure that orders are accurately filled.

Use Data-Parallel Computing to Avoid Data Motion

The key to real-time performance, especially for growing workloads, is to use memory-based, data-parallel computing. Building on fundamentally the same parallel computing architecture as supercomputers used in scientific applications, in-memory data grids (IMDGs) run on a clustered set of servers to hold and analyze memory-based data. IMDGs keep access times constant, which is exactly the characteristic needed by applications which have to handle growing workloads. More significantly, some IMDGs can host data-parallel applications to update and analyze data stored on the grid’s servers. This is the key to their ability to perform real-time analytics.

The performance benefits of the data-parallel approach are dramatic. To illustrate this, take a look at some performance measurements for a risk analysis computation in financial services modeled using a technique called “back testing.” This analysis compares a variety of stock trading algorithms using recorded price histories for a collection of equities. Each price history was stored in a single object within the IMDG, and the servers were assigned equities to analyze. (Note that the IMDG’s in-memory storage also could dynamically update the price histories from a ticker feed to enable real-time feedback to a trading system.)

The following chart compares the conventional “task-parallel” technique in which the servers analyze a random set of equities to the data-parallel technique in which the servers only examine equities stored on the same server.  Note how the data-parallel approach (red line) maintains linear performance scaling as the workload increases and IMDG servers are added to the cluster. In contrast, the task-parallel approach (blue line) fails to achieve performance scaling due to accessing objects from remote servers which creates substantial networking overhead.

By avoiding data motion, the data-parallel approach delivers much higher performance. All data is analyzed in place without the need to send it over to network to another server for analysis. IMDGs which perform data-parallel analysis can take full advantage of this linear speedup to deliver results with the lowest possible latency. This enables them to run real-time analytics on fast-changing data held in the IMDG, and they combine the IMDG’s in-memory storage with scalable computation to implement complex applications.

An Example in Financial Services

Consider the example of a hedge fund tracking its trading strategies for the market sectors it tracks. The data for these strategies can be stored within an IMDG as a collection of objects, each of which represents a market sector, such as high tech or real estate, and holds the equity positions and rules for that market sector. Because the IMDG automatically distributes the objects within a collection across all grid servers, it ensures that data-parallel analysis will be load-balanced across the cluster.

The IMDG continuously runs a data-parallel computation that both updates each strategy object with a snapshot of market price changes from an incoming market feed and evaluates the strategy to determine if stock trades are needed. By performing this analysis in parallel across all strategies, the IMDG generates results in milliseconds instead of several minutes needed by conventional disk-based, sequential analysis. No data motion is needed to perform the data-parallel analysis, and maximum performance is achieved.

The following diagram illustrates how the IMDG hosts a set of strategies and performs this analysis while updating them with a live market feed containing snapshots of price changes. The analysis produces a stream of alerts to the trader (or to an automated trading system) for strategies that need rebalancing. The diagram shows the data parallel analysis being performed by a technique called parallel method invocation (PMI), which executes the analysis code in parallel on all objects and then globally combines the results for delivery to the trader:

The net effect is that the hedge fund now can update its strategies and obtain alerts in real time to rebalance its portfolios based on current market conditions. A proof of concept implementation using 2K strategies and tracking a total of 40K positions on a cluster of four servers delivered alerts within about 330 milliseconds. This was measured to be more than 40X faster than running this analysis on the Apache Hadoop platform and shows the power of IMDGs to perform real-time analytics.

Summing Up

In-memory data grids offer a powerful yet easy to use platform for hosting fast-changing, in-memory data and running highly scalable, data-parallel computations. This allows IMDGs to be seamlessly integrated into operational systems and perform real-time analytics on “live” data, opening up many new opportunities to add value to these systems.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire