Charming Exascale Power Problems

By Osman Sarood, Laxmikant Kale & Esteban Meneses

July 30, 2014

Power, energy and reliability present major challenges to HPC researchers in their endeavor to build larger machines. As we approach the exascale era, both hardware and software designers need to account for these challenges while optimizing performance. The Parallel Programming Laboratory (PPL) at the University of Illinois at Urbana-Champaign (UIUC) has been actively working on meeting these challenges by leveraging the adaptive runtime system of the Charm++ programming model.

Current petascale machines have Mean Time Between Failures (MTBF) that can be anywhere from a few hours to days. Some reports predict exascale machines will have an MTBF in the range of 35-40 minutes. Intriguingly, past research describes a relation between a processor’s temperature and its reliability: failure rates double with every 10C increase in temperature. Our work applies this relationship between processor temperature and reliability by restraining processor temperature, thereby reducing the frequency of faults and consequently improving application performance in fault-prone environments.

There are costs and benefits to improving reliability through temperature control driven by Dynamic Voltage and Frequency Scaling (DVFS). Improved reliability helps not only by directly decreasing failures; it also allows the code to checkpoint less frequently, decreasing overhead. However, it comes at a cost of slower processors and increased load imbalance.

By restraining processor temperatures, we can empower the runtime system to set the expected failure rate of the system, adjusting it within a feasible range. Our control strategy lets each processor work at its maximum frequency as long as its temperature is below a threshold parameter. If a processor’s temperature crosses the maximum threshold, it is controlled by decreasing the voltage and frequency using DVFS. When the voltage and frequency are reduced, its power consumption will drop and hence the processor’s temperature will fall.

When DVFS adjusts frequencies differently across the cores in a cluster, the workloads on those cores change relative to one another. This can significantly degrade performance of a tightly coupled parallel application, where processors synchronize after a time step before proceeding to the next time step. We mitigate the resultant timing penalty with a load balancing strategy that is conscious of the difference in speeds for different processors.

Our load balancing strategy, based on overdecomposition and object migration, uses the Charm++ adaptive runtime system to increase processor utilization. It analyzes the current load of each processor according to its new frequency and determines if it is overloaded or under-loaded. Once this decision is made, our scheme intelligently exchanges objects from overloaded (hot) processors to under-loaded (cold) processors to balance load. Temperature checking and corresponding load balancing can be invoked at user defined intervals.

One twist in this work is that different applications vary both in how hot they will make processors at a given frequency, and in how their performance is affected by different frequencies. Note that this implies different applications may actually experience a different MTBF on the same machine! Thus, we use three applications that present different conditions.

To gauge the effects of temperature control on MTBF and hence application performance, we formulate a model that relates total execution time of an application to reliability and the associated slowdown for temperature restraint. The model accounts for different execution speed at different frequencies, checkpointing overhead and recovery time depending on MTBF, and the additional overhead of experiencing and adapting to load imbalance. We validate the accuracy of our model for each application using a small experimental testbed.

We use our validated model to project the benefits of our scheme for larger machines. Our results point towards a tradeoff between improvement in reliability and the associated cost of applying temperature control. This tradeoff determines the optimal temperature threshold for a given application and machine size.

The following figure compares the machine efficiency (proportion of time spent doing useful work) for a 2D stencil application between a baseline run without temperature control and a constrained run with the temperature threshold set to 48C. Below 32K sockets, we get a lower efficiency than the baseline. However, above 32K sockets, our scheme starts outperforming the baseline case. For reference, the Blue Waters system at NCSA has nearly 50K sockets. For 256K sockets, our scheme is projected to operate the machine with an efficiency of 0.29 compared to 0.08 for the baseline. Finally, for 340K sockets, the baseline efficiency drops to 0.01, making the machine almost nonoperational, whereas our scheme can still operate the machine at an efficiency of 0.22.

exascale_race

These promising results encourage us to extend our work by investigating more detailed models, larger experimental systems, and more advanced fault tolerance protocols, such as message logging and parallel recovery.

This work is part of a research theme in our group: using adaptive runtime control to deal with the challenges presented by sophisticated applications and complexities of hardware. The Parallel Programming Laboratory has developed Charm++ for the past 20 years as a production quality parallel programming language, used in many CSE applications, including the Gordon Bell-winning biomolecular simulation program NAMD.

Author Biography:

Osman Sarood is a final year PhD student in the UIUC Computer Science department. His research is focused on performance optimization under thermal and power constraints.

Esteban Meneses is a Research Assistant Professor working in the Center for Simulation and Modeling at the University of Pittsburgh. His research is focused on load balancing and fault tolerance techniques for large-scale parallel applications. He holds a PhD degree in Computer Science from UIUC.

Laxmikant Kale received his PhD in computer science from State University of New York, Stony Brook, in 1985. He joined the Computer Science faculty of UIUC as an Assistant Professor in 1985, where he is currently employed as a full Professor. His research spans parallel computing, including parallel programming abstractions, scalability, automatic load balancing, communication optimizations, and fault tolerance. He has collaboratively developed several scalable CSE applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire