Quadrics Delivers Integral Interconnection

By Nicole Hemsoth

November 4, 2005

HPCwire recently sat down with Moray McLaren, research and development manager at Quadrics Ltd., a leading supplier and developer of high performance networking products and resource management software. The company's applied advanced technology builds clusters that deliver supercomputing levels of performance and reliability. Its QsNet products are based on internally developed ASICs, firmware and software technologies. With a fine track record of working in partnership with other HPC companies as well as organizations such as Lawrence Livermore and Los Alamos National Laboratories, the Pittsburgh Supercomputer Center and Pacific Northwest National Laboratory, Quadrics is at the forefront of helping solve some of the world's most complex computational challenges.

HPCwire: Interconnect vendors such as Quadrics make a lot of their low message latency these days, but how far is this really a measure of capability of an interconnect?

McLaren: Simple latency measurements can give an indication of the potential of an interconnect, but you need to be careful that they are measured in the way that the interconnect will actually be used in the final system. For example, latency is typically measured across just a pair nodes, but when the final system scales up to thousands [of nodes], then you need to consider scaling in both the hardware and software. It's fairly obvious the worst-case hardware latency across a larger network will be higher as you have to traverse more switches, but in some cases the software latencies are higher too since they have to employ different buffer structures for larger scale networks. At Quadrics, we use the same software across all sizes of network. We have ultra low hop latency in our switch so as to reduce the hardware scaling factor

HPCwire: So does the choice of MPI stack effect the measured latency?

McLaren: Surprisingly, not as much as you would think. At Quadrics, we support the Scali, Intel and HP multi-platform MPIs. The simple end-to-end latency is similar across all of them. The Scali and Intel implementations map onto the DAPL abstraction layer. Since the basic transfer mechanism is a remote write operation, which maps very closely onto the mechanisms of the base hardware, there's little overhead here. The problem with MPI implementations that are based on simple puts is that they required order(N) buffer space. This is acceptable for systems of a few hundreds of nodes, but on a 1,000-way network, this can be a significant fraction of the node memory. The way around this is to use a common queue, with the network interface allocating the buffer space. This requires more intelligence on the network interface and can add to latency.

HPCwire: How would you expect it to vary with node architecture?

McLaren: The devil is in the detail here. The actual CPU architecture choice — and even to some extent, the bus choice — are not as important as how “close” the IO bus is to the main memory. In common with most vendors, our current best case latencies are measured on the Opteron platform. But this is as much factor of the integration of the Opteron memory system, as to Hypertransport. In fact, our standard QsNet II adapters produce similar low latencies to other NICs developed specifically for Hypertransport. Newer Intel platforms that bring the PCI- Express interface closer to the memory system are starting to close the gap

When you start looking at larger NUMA systems, then it becomes much more complex, since the latency varies depending on which CPU group you are in and the location on the source and destination memory buffer. At Quadrics, we support multiple rails of interconnect. In this case, the software automatically allocates the communication to the lowest latency adapter.

HPCwire: Would using other APIs give deliver a lower latency result?

McLaren: The Cray Shmem message layer is a simple “put get” mechanism and as such maps well onto any interconnect based on put-and-get. The other key advantage is there is no unnecessary sequentialization of messages. In Shmem, there is effectively a relaxed store order model, which gives the hardware the maximum opportunity to handle communications in parallel. For this reason, it's also a good fit for multi-threaded applications that need to communicate.

HPCwire: Quadrics makes a big deal about collectives performance. Why is this important?

McLaren: If you have a code that has been structured to make extensive use of collective operations, then by having a high performance, highly scalable collective implementation, you can insure that the code will scale well to large numbers of nodes. In our collectives implementation, we actually do the double precision floating point operations on the processor embedded in the network interface. This saves the delays of passing results back and forth across the IO bus to the main processor.

HPCwire: Then aren't bandwidth measures much more straightforward?

McLaren: Since bandwidth is measured over large messages, it is typically less sensitive to software issues. However, you need to watch for people quoting throughput bandwidth, for where a number of simultaneous transfers are used to saturate the link, compared to the bandwidth for a single message transfer. As the message length becomes very large, you can start to run into limitations with the size of mapping hardware or with lock down caches. On Quadrics NICs, we implement a full Memory Management Unit capable of mirroring the main processors VM mappings to avoid this limitation.

HPCwire: So given the limitations of simple benchmarks, wouldn't it be better to test everything with the final applications?

McLaren: For limited size systems, this is indeed preferable, but for the very largest systems this just isn't practical. The good thing about the more straightforward communications benchmarks is that, for a well designed interconnect, the scaling performance is usually very predictable. When you run a complex application, then Amdahl's law means that predicting the performance is much more complex. However, at least if you start with an platforms designed from the outset for scalability, the programmer can concentrate on any potential issues within the code, without being concerned that a performance problem is an artefact of the underlying hardware.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This