Quadrics Delivers Integral Interconnection

By Nicole Hemsoth

November 4, 2005

HPCwire recently sat down with Moray McLaren, research and development manager at Quadrics Ltd., a leading supplier and developer of high performance networking products and resource management software. The company's applied advanced technology builds clusters that deliver supercomputing levels of performance and reliability. Its QsNet products are based on internally developed ASICs, firmware and software technologies. With a fine track record of working in partnership with other HPC companies as well as organizations such as Lawrence Livermore and Los Alamos National Laboratories, the Pittsburgh Supercomputer Center and Pacific Northwest National Laboratory, Quadrics is at the forefront of helping solve some of the world's most complex computational challenges.

HPCwire: Interconnect vendors such as Quadrics make a lot of their low message latency these days, but how far is this really a measure of capability of an interconnect?

McLaren: Simple latency measurements can give an indication of the potential of an interconnect, but you need to be careful that they are measured in the way that the interconnect will actually be used in the final system. For example, latency is typically measured across just a pair nodes, but when the final system scales up to thousands [of nodes], then you need to consider scaling in both the hardware and software. It's fairly obvious the worst-case hardware latency across a larger network will be higher as you have to traverse more switches, but in some cases the software latencies are higher too since they have to employ different buffer structures for larger scale networks. At Quadrics, we use the same software across all sizes of network. We have ultra low hop latency in our switch so as to reduce the hardware scaling factor

HPCwire: So does the choice of MPI stack effect the measured latency?

McLaren: Surprisingly, not as much as you would think. At Quadrics, we support the Scali, Intel and HP multi-platform MPIs. The simple end-to-end latency is similar across all of them. The Scali and Intel implementations map onto the DAPL abstraction layer. Since the basic transfer mechanism is a remote write operation, which maps very closely onto the mechanisms of the base hardware, there's little overhead here. The problem with MPI implementations that are based on simple puts is that they required order(N) buffer space. This is acceptable for systems of a few hundreds of nodes, but on a 1,000-way network, this can be a significant fraction of the node memory. The way around this is to use a common queue, with the network interface allocating the buffer space. This requires more intelligence on the network interface and can add to latency.

HPCwire: How would you expect it to vary with node architecture?

McLaren: The devil is in the detail here. The actual CPU architecture choice — and even to some extent, the bus choice — are not as important as how “close” the IO bus is to the main memory. In common with most vendors, our current best case latencies are measured on the Opteron platform. But this is as much factor of the integration of the Opteron memory system, as to Hypertransport. In fact, our standard QsNet II adapters produce similar low latencies to other NICs developed specifically for Hypertransport. Newer Intel platforms that bring the PCI- Express interface closer to the memory system are starting to close the gap

When you start looking at larger NUMA systems, then it becomes much more complex, since the latency varies depending on which CPU group you are in and the location on the source and destination memory buffer. At Quadrics, we support multiple rails of interconnect. In this case, the software automatically allocates the communication to the lowest latency adapter.

HPCwire: Would using other APIs give deliver a lower latency result?

McLaren: The Cray Shmem message layer is a simple “put get” mechanism and as such maps well onto any interconnect based on put-and-get. The other key advantage is there is no unnecessary sequentialization of messages. In Shmem, there is effectively a relaxed store order model, which gives the hardware the maximum opportunity to handle communications in parallel. For this reason, it's also a good fit for multi-threaded applications that need to communicate.

HPCwire: Quadrics makes a big deal about collectives performance. Why is this important?

McLaren: If you have a code that has been structured to make extensive use of collective operations, then by having a high performance, highly scalable collective implementation, you can insure that the code will scale well to large numbers of nodes. In our collectives implementation, we actually do the double precision floating point operations on the processor embedded in the network interface. This saves the delays of passing results back and forth across the IO bus to the main processor.

HPCwire: Then aren't bandwidth measures much more straightforward?

McLaren: Since bandwidth is measured over large messages, it is typically less sensitive to software issues. However, you need to watch for people quoting throughput bandwidth, for where a number of simultaneous transfers are used to saturate the link, compared to the bandwidth for a single message transfer. As the message length becomes very large, you can start to run into limitations with the size of mapping hardware or with lock down caches. On Quadrics NICs, we implement a full Memory Management Unit capable of mirroring the main processors VM mappings to avoid this limitation.

HPCwire: So given the limitations of simple benchmarks, wouldn't it be better to test everything with the final applications?

McLaren: For limited size systems, this is indeed preferable, but for the very largest systems this just isn't practical. The good thing about the more straightforward communications benchmarks is that, for a well designed interconnect, the scaling performance is usually very predictable. When you run a complex application, then Amdahl's law means that predicting the performance is much more complex. However, at least if you start with an platforms designed from the outset for scalability, the programmer can concentrate on any potential issues within the code, without being concerned that a performance problem is an artefact of the underlying hardware.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This