Taming the Whirlwind

By Tim Palucka

December 9, 2005

“We’re experiencing a little turbulence, folks,” the pilot says, as the plane plummets fifty feet like a car in a funhouse ride. White knuckles, churning stomach – on an airplane, a word you’d prefer not to hear is turbulence.

As P. K. Yeung is quick to tell you, however, turbulence is often beneficial and modern air travel couldn’t exist without it. “But for the turbulent mixing of fuel and air in a jet engine, jet flight wouldn’t be possible,” says Yeung, a professor of aerospace engineering at Georgia Tech. He has applied his deep knowledge of turbulence to carry out some of the largest computational studies of this widespread and important phenomenon, and his recent work at PSC, using 2,048 processors of LeMieux, PSC’s terascale system, sets a new milestone for large-scale turbulence simulation.

Part of our lives in many ways – from the cream we stir in our coffee to thunderstorms that ruin a night at the ballgame – turbulence defies easy definition, but is, roughly, a state of fluid flow in which the velocities at any point fluctuate randomly.

But for these random fluctuations, many important industrial chemical reactions would happen very slowly or not at all. On a larger scale, turbulent mixing in the lower atmosphere coupled with phenomena at high altitudes has a great effect on weather in the short term and climate in the long term. Turbulent mixing in ocean currents, such as the Gulf Stream, spanning thousands of miles helps to maintain the heat balance and ecology of the oceans.

Better understanding of turbulence, especially since the advent of supercomputers, has led to improvements in how we live, including better airplane wings, which lower the fuel-cost of air travel, and better artificial heart valves, which save lives. But it’s an extremely complex phenomenon – one that Nobel Prize-winning physicist Richard Feynman once referred to as the “last unsolved problem in physics” – and many challenges remain.

One of the more pressing turbulence-related issues, says Yeung, is in preserving environmental quality. Where, for instance, will particles of pollutants from a smokestack end up minutes, hours, and days from now? “In order to maintain air quality, we need to understand the behavior of smoke emanating from pollution sources. Almost always the flow out of a chimney will be turbulent. We can see that in the sky – the smoke follows an irregular path – and we want to be able to describe the motion of those pieces of fluid, which constitute that cloud. If a certain part of that fluid has been contaminated, we want to know where it goes.”

Using a powerful method, called “direct numerical simulation,” with the advanced parallel-processing capability of LeMieux, Yeung produced results that are a significant step toward this goal.

Tracking the Particles

A major challenge in simulating turbulence is that the random fluctuations – the eddies and vortices – occur over a very wide range of scales, all of which must be taken into account in a realistic model. In the atmosphere, for instance, the swirls and eddies of air that make up the overall flow vary from several centimeters in diameter to thousands of kilometers, with every size in between. The ratio of scales can be in the thousands, with the number of variables – and thus the amount of computing required to keep track of them – increasing rapidly as the ratio increases. This imposes a daunting computational demand.

Yeung tackles this problem directly. Direct numerical simulation (DNS), starts with the fundamental equations of fluid flow and calculates speed and direction for each fluid particle. “Direct” means that velocities are calculated at each time step as the flow progresses, without reliance on experimental data to supply parameters. DNS tracks each particle – such as the particles in a plume of smoke – as it moves step-by-step within a high-resolution grid.

“We are acting as if we could measure the velocity everywhere in space and over a sustained period of time,” Yeung explains. “With DNS, we are able to follow the irregular pathways or trajectories of fluid elements exiting a localized contaminant source.”

Visualize a plume of smoke rising from a smokestack three feet in diameter. Any two smoke particles are separated by three feet, at most, as they exit the stack. DNS allows you to address the issue of how far apart these two particles will be after they wander about in the atmosphere for a sustained period of time. Do they separate or come together over time? To do this experimentally, to identify and keep track of a single pair of fluid particles, let alone all the particles in a large cloud, would be impossible. DNS – Yeung points out – provides more data, more accurately, than is possible to gather experimentally.

Scientists quantify the degree of turbulence in a fluid flow by the Reynolds number. Higher Reynolds numbers correspond to a wider spread in the range of eddy sizes, equivalent to higher levels of turbulence. Scientists have long been interested in simulating high Reynolds number flows, but have been limited by computing power. “The availability of computers like LeMieux allows us to increase the Reynolds number by expanding the number grid points,” says Yeung, “and this allows us to simulate a wider range of scales.”

A Turbulence Database and the Kolmogorov Constant

Over the past year, Yeung employed 2,048 LeMieux processors simultaneously solving the fundamental fluid equations in a three-dimensional grid with eight-billion grid points. This is the largest DNS ever done that tracks the path of particles over time. To get started on LeMieux required importing his software to a system where it hadn’t run before, a major challenge. “We’ve had very capable and dedicated assistance from PSC consulting.”

LeMieux’s ability to communicate efficiently among processors has been an important factor in Yeung’s ability to carry out his large-scale DNS work. His software efficiently exploits LeMieux, using thousands of processors with minimal added communication time involved in adding processors – a major advantage for his work.

With more than a million processor-hours of LeMieux time, Yeung’s simulations produced terabytes of data that yield the highest Reynolds number ever calculated with the DNS approach. Previously, researchers had to extrapolate data from low turbulence simulations if they wanted to apply it in high turbulence situations, which led to uncertainties. “We will now be approaching the Reynolds numbers typical in applications more closely,” says Yeung, “and if we still have to extrapolate we can do so with much greater confidence.”

Beyond his immediate goal of understanding pollutant dispersion for environmental purposes, Yeung’s simulations create a valuable database – which can be made available at PSC to the wider community of turbulence scientists, who can use it to test their turbulence models. Because of the fundamental nature of his DNS simulations – free of assumptions derived from observation – the data is useful for turbulent flows in many different applications. For pollutant dispersion, such as a smoke plume, from a localized source, other researchers can compare their model results with Yeung’s DNS data for a similar Reynolds number. “Using DNS we can obtain the fundamental data that would allow us to formulate those models more carefully,” says Yeung, “and eventually to evaluate the performance of the model and suggest improvements.”

In extending his DNS studies to higher Reynolds numbers, Yeung also is getting closer to pinpointing an elusive number called the Lagrangian Kolmogorov constant. In 1941, Russian mathematician A.N. Kolmogorov posited that at high enough Reynolds number small-scale features of turbulence are independent of the large-scale flow geometry. This theory has been widely influential in turbulence research. “The Kolmogorov constant is of great interest because of the supposition that it is universal,” says Yeung, “being the same for turbulent flows of various types of geometry as long as the Reynolds number is sufficiently high.”

In the laboratory, with data from fixed measurement locations, it is straightforward to apply Kolmogorov’s hypotheses, and this version of the constant is well established. Models of pollutant transport, however, use what’s called a Lagrangian reference frame, which mimics an observer moving with the fluid flow – like a weather balloon that drifts with the wind. Research by Yeung and others has indicated that it takes very high Reynolds numbers simulations to establish this version of the constant. “This constant is very important to modeling,” says Yeung. “Our group’s large simulations on LeMieux have given quite clear evidence that the value is approaching a constant as the Reynolds numbers increases without limit.”
 
For more information, including graphics, visit http://www.psc.edu/science/2005/yeung/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of what it is like to orbit and enter a black hole. And yes, it c Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hopes to fill a big software gap with an agreement to acquire R Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire