The Human Code

By Tim Green

February 3, 2006

In at least one battle between man and machine, the man is winning.

Kazushige Goto (photo Geno Esponda)He is Kazushige Goto, a research associate at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin. Goto can make supercomputers run faster and more efficiently and he can do it better than complex programs developed for that purpose.

Four of the 11 fastest supercomputers in the world use Goto's code to benchmark their performance. Scientific and engineering research programs run as much as 50 percent faster using his code.

It was a coup for TACC when it lured Goto from his job as a patent examiner in the Japan Patent Office to work in Texas full time.

“He is a world-class resource, and TACC is extremely lucky and privileged to have him as a member of the technical staff,” Dr. Mark Seager of Lawrence Livermore National Laboratory said when Goto's TACC appointment was announced in August 2004.

What Goto does is considered esoteric by most standards, but in the world of high-performance computing it's hot stuff. So hot that he has become a legend in the supercomputing community.

Supercomputers, also called high performance computers, are those big machines that simulate the world in bits and bytes. They do things like help predict weather patterns and enable scientists and engineers to visualize models of experiments. In one case, a supercomputer beat the world's best chess player at his own game.

To do all this, the computers perform trillions of mathematical calculations per second and this is where Goto's expertise comes in.

He has developed methods for optimizing the way the chips that power the computers perform certain groups of calculations, called math kernels.

He painstakingly programs the chips to schedule the desired mathematical calculations in the most efficient order. That allows the computer to scoop up the results and keep crunching numbers without missing a beat.

Goto rearranges the order in which crucial algebraic functions are done to make them more efficient. These are basic linear algebra subroutines, called BLAS. The companies who design and build the computers generally provide their own BLAS software, but Goto's version, called GotoBLAS, is usually even better. He assembles his version into a portable BLAS library, which scientific programmers can use to make their applications run faster.

In fact, several high performance computing centers use his libraries to help their machines run faster for the Linpack benchmark, which determines the world's fastest computers.

It's like television networks running special programming during sweeps rating period to increase their ratings.

“Some (programs) are highly dependent on the performance of BLAS so those folks want the absolute fastest library available,” said Dr. Karl Schulz, a research associate at TACC.

The major benefit is that researchers can use Goto's BLAS without making any changes to their own application and reduce the overall execution time.

“In a production environment supporting as many users as we have at TACC, if we can save even a few percent on every run, that savings amortized over the life cycle of such a large machine provides a large number of compute cycles for other researchers,” Schulz said.

Goto's BLAS can increase the Linpack performance by several percent. In some scientific applications, performance increases as much as 50 percent.

Here's one way to look at what Goto does:

If Goto were in charge of speeding up highway traffic, he would schedule merging cars so they can get into traffic at the right time, without slowing down the other cars on the highway. The new cars would merge smoothly into traffic and it would continue to flow. Fewer backups, less congestion, faster travel.

What's more, the way he codes the chips would be like him directing cars onto the highway by standing on the on-ramp and using hand signals.

He starts with pencil and paper and then turns to computers to write the code that puts his plan into action.

“I write down the code on the paper and try to find the best way for the specific architecture,” he said.

It is a rigorous process. To optimize the chips, Goto writes 2,000-3,000 lines of code to replace a handful of lines.

Dr. Robert van de Geijn, a professor of computer sciences at The University of Texas at Austin, has worked with Goto. He said Goto combines a scientific understanding of the problem and an engineer's acumen in implementing his solution.

“On one hand, he had a key insight into how to restructure these kernels to inherently allow that to be done better and that's what I would call the scientific insight he had,” Van De Geijn said. “And then on the other hand, he's just very, very good at looking at the machine instructions for a particular processor and figuring out instructions just so that the machine really hums. That's more the engineering side of it.”

He's been instrumental in finding some hardware inefficiencies in new architectures using his library and TACC has talked to a hardware vendor who wants to use his library because it exposes specific processor problems.

“It's an interesting byproduct of him understanding what the hardware is doing to such a degree that he can find problems that other people can't,” Schulz said.

Goto started working on the optimization problem about 10 years ago as a hobby. He worked on it during his train rides to and from work at the patent office in Tokyo.

It was a hobby that had the makings of an obsession.

Goto, his wife, Natsumi, and young son, Hibiki, now 3, shared their tiny apartment with nine large computers.

“I never turned on everything at once,” he said, “because it would become dark due to power failure.”

He worked six years to crack the code on the Alpha chip, made by Digital Equipment Corp., now a part of Hewlett-Packard Co.

Today at TACC, he has eight workstations—all plugged in and humming—under his desk.

“I'm pretty happy during winter, but it's horrible in summer,” Goto said.

Goto shared his work by posting it on the Web and had started to become known in the supercomputing world.

After conquering the Alpha, he wanted to see if he could extend his method to other chips. He thought it was an opportunity to use a sabbatical offered by the patent office to help its examiners keep up with current technology and improve their English.

Goto's e-mail seeking a place to take his sabbatical arrived in the inbox of van de Geijn, who studies linear algebra libraries.

“On a hunch, I decided to check him out with people I knew in industry,” van de Geijn said, “and it came back that he really was quite an artist at this particular problem.”

Ensconced at the university's Computer Sciences Department, Goto delved into the Pentium 4 chip from Intel Corp. and the Itanium chip, a joint effort by Intel and Hewlett-Packard.

“Within a month or so he had managed to squeeze out an extra 10 percent performance,” van de Geijn said. “He took the insight he had had on one machine and generalized it to every current microprocessor out there and therefore really demonstrated the superiority of his fundamental insight.”

Van de Geijn said Goto's sabbatical year might be considered the equivalent of Ph.D. work.

“What he demonstrated while he was here for that year was exactly what we would expect from a Ph.D. student, which is you identify an interesting problem, you come up with an innovative solution to it and you demonstrate the benefit of that in whatever way you can,” Van de Geijn said. “And he certainly went through all of those steps during that year. Now he didn't get a piece of paper at the end of the year giving him a Ph.D., but he certainly established himself as the foremost authority in his field, which, in my mind, is worth a lot more.”

When the sabbatical was up on June 30, 2003, Goto returned to the patent office in Japan. But van de Geijn and others at the university sought to bring him back.

“The sabbatical was successful, but by no means is one year enough to do 'everything' there is to do in high performance linear algebra,” said Dr. Jay Boisseau, director of TACC. “We want him at TACC to pursue many further developments in this important area, which is a 'foundation' for many real-world high performance computing applications.”

After 18 months of negotiating and coaxing, Goto accepted the research job at TACC.

Van de Geijn said the move to Texas was a leap for Goto. He left a respected and secure job in Japan for something much different in another country.

“Patent examiner is a very secure job and I can work until retirement age if I wish,” Goto said. “Yes, my action is really risky, but I just wanted to try the new job.”

Now that his former hobby is his full-time job, Goto has another problem to solve.

“I have to find a new hobby,” he said.

This article was provided courtesy of The University of Texas at Austin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Oak Ridge Score Reveal

May 5, 2024

It’s time to reveal the results from the Oak Ridge competition module, well, it’s actually well past time. My day job and travel schedule have put me way behind, but I am dedicated to getting all this great content o Read more…

2024 Winter Classic: Meet Team Lobo

May 5, 2024

This is the other team from University of New Mexico, since there are two, right? This team has some significant cluster competition experience with two veterans of previous Winter Classic and SC events. It’s a nice mi Read more…

2024 Winter Classic: Meet Team UC Santa Cruz

May 4, 2024

It was a quiet Valentine’s Day evening when I interviewed the UC Santa Cruz team. Since none of us seemed to have any plans, it seemed like a good time to do it. But there was some good news for the Santa Cruz team Read more…

2024 Winter Classic: Meet the Roadrunners

May 4, 2024

This is the other team from the University of New Mexico. I mistakenly thought that one of their team members was going to make history by being the first competitor to compete for two different schools – but I was wro Read more…

2024 Winter Classic: Meet Channel Islands “A”

May 3, 2024

This is the second team from California State University, Channel Islands – or maybe it’s the first team? Not sure, but I do know they have two teams total, and this is one of them. As you’ll see in the video in Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

2024 Winter Classic: Meet Team Lobo

May 5, 2024

This is the other team from University of New Mexico, since there are two, right? This team has some significant cluster competition experience with two veteran Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire