Sun’s Supercomputer Rises in the East

By Nicole Hemsoth

July 14, 2006

In May, Sun Microsystems, Inc. announced that the Tokyo Institute of Technology (Tokyo Tech), one of the world's premier science and technology universities, installed a 38-teraflops supercomputer, based on Sun Fire Server technology. Tokyo Tech's supercomputer, called TSUBAME, represents Sun's largest high performance computing win to date. The system also represents the largest supercomputer outside the United States. It includes 10,480 AMD Opteron processor cores, more than 21 terabytes of memory and 1.1 petabytes of hard disk storage.

IDC's Earl Joseph recently completed an exclusive interview for HPCwire with Professor Satoshi Matsuoka, of the Tokyo Tech's Global Scientific Information and Computing Center. Professor Matsuoka talks about the significance of the new TSUBAME system and describes some of the cutting-edge applications that will be running on it.

HPCwire: What's the status of the Sun system?

Matsuoka: The Sun system was installed in March 2006. When the Sun boxes arrived in mass, the infrastructure was already in place, so the installation went quickly, one of the fastest installations ever of such a large system. On April 3, we were able to start the service on a limited number of nodes. We did preliminary Linpack runs on the whole system in early May. In early June, about 5,000 processors, or half of the system, was opened up for public use. We were reserving the other 5,000 processors for benchmarking and special allocations.

The user workload has been growing steadily and is already at 70 percent. We're now running hundreds of jobs on the system. We're receiving help desk mail from all of the university departments we serve. Many users are telling us they love the new system. Some users are starting to do massive runs. One of these, for example, is looking at scenarios with avian flu and the impact of potential social policy decisions. This is a parameter study.

HPCwire: How difficult was the installation?

Matsuoka: Based on our prior experiences bringing up large computers, the glitches we've faced with this Sun system have been quite minor. We're currently stress-testing the machine around the clock. There have been no major complaints. It's just been an amazingly quick ramp-up to stable operation. After just a few weeks, failures were minor and very sporadic.

HPCwire: Were there any surprises?

Matsuoka: There are always a couple. Staying with fat nodes turned out to be a good strategic move. With a small node system of this size, we would have had to manage 10,000 thin nodes. With fat nodes, the number is only 655, which is not all that different from the scale we have been used to. The other surprise is how much attention we are getting because of this system.

HPCwire: I've been hearing a lot lately about the issue of power consumption on large-scale HPC systems. How has your new system affected power consumption at your center?

Matsuoka: With our older systems, which included a vector supercomputer and others, we were operating at 600-700 kilowatts for a total of two peak teraflops. Now we've raised the peak 40 times to 80 teraflops, and power consumption has increased by a factor of less than two. It's at 1.2 megawatts today, but we're implementing power-saving measures that we believe will lower this 10-15 percent to about 800 kilowatts for the whole machine. We're getting a lot more accomplished for this modest increase in power consumption, and this is more than offset by the benefits the new system brings to the university, including the ability to attract more research funding.

HPCwire: Did you have to build or find more floor space?

Matsuoka: No. The Sun design is amazingly compact. All 76 racks and 20 cooling units fit into our existing building.

HPCwire: Are any end-users doing work on the ClearSpeed processors yet?

Matsuoka: To some extent, but it's still very early. We envision people running smaller applications and using their libraries to exploit the ClearSpeed accelerators. For the right applications, there will be big performance gains.

HPCwire: Where do the codes come from that run on the new system?

Matsuoka: We help people from the university port and scale their codes. We have some user accounts from outside Japan, and we get outside codes to run, such as the Dynamo and ocean codes from the Earth Simulator. It's a big variety. We're running a combustion code on the system, for example, and we expect to run a carbon nanotubes code because the university has a well-known expert in this field. We also have civil engineering codes. We're getting codes from every university department that uses HPC.

HPCwire: Why would some Earth Simulator codes be run on your system instead of on the Earth Simulator itself?

Matsuoka: The Earth Simulator is already being used to capacity. We are providing room for growth.

HPCwire: How hard is it for Japanese users who aren't part of the university to access your system?

Matsuoka: Today, they need to have a collaboration agreement with the university, and agree to make the results available to the public. In the future, we will have more allocations for the other national centers. We still need to develop chargeback methods for this. Also, it would help if the Japanese government could establish funding methods to more easily allow the national centers to share resources over the Grid.

HPCwire: How will you provide access over the Grid?

Matsuoka: Users will have national Grid accounts with allocations. We are in the process of establishing such a national CyberScience Infrastructure Grid starting this year.

HPCwire: What about job sizes? What do you expect to happen there?

Matsuoka: On our older machines, we saw MPI job sizes ranging from one to several hundred processors. Once you have a larger machine, people want to take advantage of it. We expect to run some codes that use a large fraction of the whole system. Then there will be more codes that run on 64 or so processors and are run many times. These are parametric studies for ensembles, like the bird flu example I mentioned earlier. We've already run benchmarks using half, and in some cases all, of the machine.

HPCwire: Will you run international benchmarks?

Matsuoka: Yes. The process is that we would first need to sign a contract for collaboration with them that includes making the results public and posting them on our website.

HPCwire: What programming languages are being used on the Sun system?

Matsuoka: People use MPI, OpenMPI, OpenMP, Java, MATLAB, scripting language, automatic parallelizing compilers, and so on. We may look into UPC once the system is even more stable.

HPCwire: How would you handle 1,000 small accounts accessing the system at once?

Matsuoka: That would be evidence of major success. Demand like that would demonstrate that we needed more resources and capacity in future upgrades and systems.

HPCwire: How hard would it be to upgrade the system?

Matsuoka: The Sun design makes it easy to upgrade to quad-core AMD processors. You can replace parts of the system or the whole system. We couldn't do this with our previous systems.

HPCwire: How would you sum up the experience so far?

Matsuoka: It's an absolutely great fit with our mission, which is to be an incubator for research within our educational institution; to provide an HPC resource that is large, easily accessible and easy to use. These are the biggest wins for us. The Sun system also supports our objective to develop HPC users who can run moderate size problems today, and then later can move easily to even larger HPC systems, including Japan's planned 10-petaflops system.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Using HPC, Researchers Discover How Easily Hurricanes Form

May 21, 2020

Hurricane formation has long remained shrouded in mystery, with meteorologists unable to discern exactly what forces cause the devastating storms (also known as tropical cyclones) to materialize. Now, researchers at Flor Read more…

By Oliver Peckham

Lab Behind the Record-Setting GPU ‘Cloud Burst’ Joins [email protected]’s COVID-19 Effort

May 20, 2020

Last November, the Wisconsin IceCube Particle Astrophysics Center (WIPAC) set out to break some records with a moonshot project: over a couple of hours, they bought time on as many cloud GPUS as they could – 51,000 – Read more…

By Staff report

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to review the state of HPC use in life sciences. This is somethin Read more…

By John Russell

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This