Sun’s Supercomputer Rises in the East

By Nicole Hemsoth

July 14, 2006

In May, Sun Microsystems, Inc. announced that the Tokyo Institute of Technology (Tokyo Tech), one of the world's premier science and technology universities, installed a 38-teraflops supercomputer, based on Sun Fire Server technology. Tokyo Tech's supercomputer, called TSUBAME, represents Sun's largest high performance computing win to date. The system also represents the largest supercomputer outside the United States. It includes 10,480 AMD Opteron processor cores, more than 21 terabytes of memory and 1.1 petabytes of hard disk storage.

IDC's Earl Joseph recently completed an exclusive interview for HPCwire with Professor Satoshi Matsuoka, of the Tokyo Tech's Global Scientific Information and Computing Center. Professor Matsuoka talks about the significance of the new TSUBAME system and describes some of the cutting-edge applications that will be running on it.

HPCwire: What's the status of the Sun system?

Matsuoka: The Sun system was installed in March 2006. When the Sun boxes arrived in mass, the infrastructure was already in place, so the installation went quickly, one of the fastest installations ever of such a large system. On April 3, we were able to start the service on a limited number of nodes. We did preliminary Linpack runs on the whole system in early May. In early June, about 5,000 processors, or half of the system, was opened up for public use. We were reserving the other 5,000 processors for benchmarking and special allocations.

The user workload has been growing steadily and is already at 70 percent. We're now running hundreds of jobs on the system. We're receiving help desk mail from all of the university departments we serve. Many users are telling us they love the new system. Some users are starting to do massive runs. One of these, for example, is looking at scenarios with avian flu and the impact of potential social policy decisions. This is a parameter study.

HPCwire: How difficult was the installation?

Matsuoka: Based on our prior experiences bringing up large computers, the glitches we've faced with this Sun system have been quite minor. We're currently stress-testing the machine around the clock. There have been no major complaints. It's just been an amazingly quick ramp-up to stable operation. After just a few weeks, failures were minor and very sporadic.

HPCwire: Were there any surprises?

Matsuoka: There are always a couple. Staying with fat nodes turned out to be a good strategic move. With a small node system of this size, we would have had to manage 10,000 thin nodes. With fat nodes, the number is only 655, which is not all that different from the scale we have been used to. The other surprise is how much attention we are getting because of this system.

HPCwire: I've been hearing a lot lately about the issue of power consumption on large-scale HPC systems. How has your new system affected power consumption at your center?

Matsuoka: With our older systems, which included a vector supercomputer and others, we were operating at 600-700 kilowatts for a total of two peak teraflops. Now we've raised the peak 40 times to 80 teraflops, and power consumption has increased by a factor of less than two. It's at 1.2 megawatts today, but we're implementing power-saving measures that we believe will lower this 10-15 percent to about 800 kilowatts for the whole machine. We're getting a lot more accomplished for this modest increase in power consumption, and this is more than offset by the benefits the new system brings to the university, including the ability to attract more research funding.

HPCwire: Did you have to build or find more floor space?

Matsuoka: No. The Sun design is amazingly compact. All 76 racks and 20 cooling units fit into our existing building.

HPCwire: Are any end-users doing work on the ClearSpeed processors yet?

Matsuoka: To some extent, but it's still very early. We envision people running smaller applications and using their libraries to exploit the ClearSpeed accelerators. For the right applications, there will be big performance gains.

HPCwire: Where do the codes come from that run on the new system?

Matsuoka: We help people from the university port and scale their codes. We have some user accounts from outside Japan, and we get outside codes to run, such as the Dynamo and ocean codes from the Earth Simulator. It's a big variety. We're running a combustion code on the system, for example, and we expect to run a carbon nanotubes code because the university has a well-known expert in this field. We also have civil engineering codes. We're getting codes from every university department that uses HPC.

HPCwire: Why would some Earth Simulator codes be run on your system instead of on the Earth Simulator itself?

Matsuoka: The Earth Simulator is already being used to capacity. We are providing room for growth.

HPCwire: How hard is it for Japanese users who aren't part of the university to access your system?

Matsuoka: Today, they need to have a collaboration agreement with the university, and agree to make the results available to the public. In the future, we will have more allocations for the other national centers. We still need to develop chargeback methods for this. Also, it would help if the Japanese government could establish funding methods to more easily allow the national centers to share resources over the Grid.

HPCwire: How will you provide access over the Grid?

Matsuoka: Users will have national Grid accounts with allocations. We are in the process of establishing such a national CyberScience Infrastructure Grid starting this year.

HPCwire: What about job sizes? What do you expect to happen there?

Matsuoka: On our older machines, we saw MPI job sizes ranging from one to several hundred processors. Once you have a larger machine, people want to take advantage of it. We expect to run some codes that use a large fraction of the whole system. Then there will be more codes that run on 64 or so processors and are run many times. These are parametric studies for ensembles, like the bird flu example I mentioned earlier. We've already run benchmarks using half, and in some cases all, of the machine.

HPCwire: Will you run international benchmarks?

Matsuoka: Yes. The process is that we would first need to sign a contract for collaboration with them that includes making the results public and posting them on our website.

HPCwire: What programming languages are being used on the Sun system?

Matsuoka: People use MPI, OpenMPI, OpenMP, Java, MATLAB, scripting language, automatic parallelizing compilers, and so on. We may look into UPC once the system is even more stable.

HPCwire: How would you handle 1,000 small accounts accessing the system at once?

Matsuoka: That would be evidence of major success. Demand like that would demonstrate that we needed more resources and capacity in future upgrades and systems.

HPCwire: How hard would it be to upgrade the system?

Matsuoka: The Sun design makes it easy to upgrade to quad-core AMD processors. You can replace parts of the system or the whole system. We couldn't do this with our previous systems.

HPCwire: How would you sum up the experience so far?

Matsuoka: It's an absolutely great fit with our mission, which is to be an incubator for research within our educational institution; to provide an HPC resource that is large, easily accessible and easy to use. These are the biggest wins for us. The Sun system also supports our objective to develop HPC users who can run moderate size problems today, and then later can move easily to even larger HPC systems, including Japan's planned 10-petaflops system.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This