A Critique of RDMA

By Patrick Geoffray, Ph.D.

August 18, 2006

Do you remember VIA, the Virtual Interface Architecture? I do. In 1998, according to its promoters — Intel, Compaq, and Microsoft — VIA was supposed to change the face of high-performance networking. VIA was a buzzword at the time; Venture Capital was flowing, and startups multiplying. Many HPC pundits were rallying behind this low-level programming interface, which promised scalable, low-overhead, high-throughput communication, initially for HPC and eventually for the data center. The hype was on and doom was spelled for the non-believers.

It turned out that VIA, based on RDMA (Remote Direct Memory Access, or Remote DMA), was not an improvement on existing APIs to support widely used application-software interfaces such as MPI and Sockets. After a while, VIA faded away, overtaken by other developments.

VIA was eventually reborn into the RDMA programming model that is the basis of various InfiniBand Verbs implementations, as well as DAPL (Direct Access Provider Library) and iWARP (Internet Wide Area RDMA Protocol). The pundits have returned, VCs are spending their money, and RDMA is touted as an ideal solution for the efficiency of high-performance networks.

However, the evidence I'll present here shows that the revamped RDMA model is more a problem than a solution. What's more, the objective that RDMA pretends to address of efficient user-level communication between computing nodes is already solved by the two-sided Send/Recv model in products such as Quadrics QsNet, Cray SeaStar (implementing Sandia Portals), Qlogic InfiniPath, and Myricom's Myrinet Express (MX).

Send/Recv versus RDMA

The difference between these two paradigms, Send/Receive (Send/Recv) and RDMA, resides essentially in the way to determine the destination buffer of a communication.

  • In the Send/Recv model, the source issues a Send that describes the location of the data to be sent, the destination posts a Receive that similarly indicates where the data is going to be written, and a matching capability is used to associate a posted Recv to an incoming Send. Each side has part of the information required for the completion of the communication; this is a “two-sided” interface.
  • In the RDMA model, both origin and destination buffers must be registered prior to any operations. This memory registration returns a handle that can be used in RDMA operations, Read or Write (a.k.a. Get or Put), to describe the origin or destination buffer. Only one side needs to have all of the information required for the completion of the communication; this is a “one-sided” interface.

In fact, most high-speed interconnects support both Send/Recv and RDMA (Put/Get) programming models, but the Send/Recv implementations of RDMA-based fabrics often lack a rich matching capability, which is a key element.

Matching

MPI is a two-sided interface with a large matching space: a MPI Recv is associated with a MPI Send according to several criteria such as Sender, Tag, and Context, with the first two possibly ignored (wildcard). Matching is not necessarily in order and, worse, a MPI Send can be posted before the matching MPI Recv is ready, creating the need to handle unexpected messages.

It is trivial to layer a Send/Recv interface on top of another Send/Recv interface as long as its matching space is wide enough. MPI requires 64 bits of matching information, and MX, Portals, and QsNet provide such a matching capability.

InfiniBand Verbs and other RDMA-based APIs do not support matching at all: they associate incoming Sends with outstanding Recvs in the order in which the Recvs were posted. If only one process can send to a specific receive queue, then you need to send messages in the same order you want to receive them. In the case of multiple senders (Shared Receive Queue), then you have no guarantee about order between senders. Worse, not having a Recv posted at the time an incoming message arrives is considered a fatal error in reliable mode. This lack of support for unexpected messages requires a specific flow-control mechanism to avoid this situation.

When implementing MPI on top of a RDMA programming model, you need to do the matching explicitly by sending a message containing the matching information to the receive side.

Overhead (zero-copy)

One of the key alleged benefits of RDMA is to avoid intermediate memory copies. How does that work with MPI? Not well, for two reasons: memory registration and synchronization.

Memory registration

Zero-copy requires both origin and destination buffers to be registered to allow safe access by the network device. Memory registration and deregistration are expensive operations. They involve a system call and an iteration over each virtual page in an OS-specific way. This registration overhead is actually similar to and sometimes exceeds the cost of a simple memory copy, going against the original objective of avoiding the overhead of intermediate copies.

So, is it possible to do zero-copy in MPI? Yes, but in very specific situations or with some unpleasant tricks:

  • Using lightweight kernels without virtual memory (Cray XT3, IBM Blue Gene).
  • Patching the various Linux kernels to implement safe long-term registration (Quadrics).
  • Hijacking the Malloc library to implement a non-portable and potentially unsafe user-level registration cache (MPICH-GM, MVAPICH, OpenMPI)
  • Optimize the registration code with specific NIC support so that the overhead is cheaper than the memory copy for large messages (MX).

In short, zero-copy, thus RDMA, is practical and efficient in the common case only when the memory registration can occur out of the critical path, which is incompatible with MPI semantics as well as Sockets semantics.

Synchronization

To do zero-copy, you also need to know where you are going to read/write the data on the remote side. Inasmuch as MPI is a two-sided interface, you need to do the matching prior to the RDMA operation, thus requiring an explicit synchronization of both the send and receive sides. The most dramatic side effect is that the MPI sender has to wait for the MPI receiver to be ready before completing the communication and reusing the send buffer. In some situations, the receive side can be very late and the matching synchronization propagates the delay to the send side. For this reason, it is not worth avoiding an intermediate copy on the send side for small/medium messages. Once the message is buffered, the MPI_Send can complete and the application can effectively move on, including reusing the send buffer.

So, it may be surprising for outsiders that most MPI implementations that claim zero-copy actually do a memory copy on both send and receive sides for small/medium messages, typically up to 16K or 32K messages, to avoid synchronization and memory-registration overhead. The RDMA model does not help in any way. The following graph, generated by my Myricom colleague Dr. Loïc Prylli, illustrates this trade-off in MX between using registration and deregistration, which provides the lowest overhead for large messages, versus memory copies, which provides the lowest overhead for short/medium messages.

Low Latency

Inasmuch as the RDMA operations are faster in native RDMA interconnects than the implementation of Send/Recv over RDMA, it is logical to try to use RDMA for small messages, even with intermediate copies. The protocol is straightforward: the send buffer is copied into a pre-registered internal buffer, RDMA-Written into a pre-registered internal buffer on the receive side, and then copied out to the corresponding MPI receive buffer. The problem lies in the one-sided characteristic of the RDMA Write: only one process can safely write into a remote buffer at a time. So the solution is to allocate a pre-registered internal buffer for each possible sender and look for messages in all of these separate buffers. Sounds nice? Not really. This strategy does not scale in time or in space. With only two processes, the receive side has only one buffer to poll. With N processes in the MPI job, the receive side has (N-1) locations to poll. Inasmuch as the polling time increases linearly with the number of processes, so does the latency. That's why most MPI implementations on RDMA-based fabrics use an RDMA method for small jobs, and fall back to a slower, more scalable, Send/Recv method for larger MPI jobs. For example, here are the short-message latencies reported in “InfiniBand Scalability in Open MPI“, Shipman, et al, IPDPS, May 2006, for the two modes of MVAPICH over InfiniBand.

What does it mean practically? Point-to-point micro-benchmarks (i.e., marketing benchmarks) are artificially better on small configurations, but performance is different in networks of useful scale. By contrast, all Send/Recv interconnects have consistent latencies, independent of the number of processes in the MPI job. Also, even the 4.19 us latency above compares unfavorably with the short-message latencies of QsNet, Portals/SeaStar, InfiniPath, or MX/Myri-10G.

Overlap of Communication and Computation (Progression)

Inasmuch as MPI is a two-sided interface requiring matching, it is important that this matching can occur independently of the MPI application, particularly for large messages. Without such asynchronous progress, it is not possible to overlap communication with computation, even when doing zero-copy.

The two following graphs are reproduced by permission from “Measuring MPI Send and Receive Overhead and Application Availability in High Performance Network Interfaces,” Doerfler, et al, EuroPVM/MPI, September 2006, a paper I highly recommend. Rather than showing overhead, the graphs show the send and receive overlap capability — the fraction of the processor time available for computation — with several recent HPC systems, listed here with their interconnects:

  • Red Storm: Cray SeaStar/Portals
  • Tbird: Cisco InfiniBand/MVAPICH
  • CBC-B: Qlogic InfiniPath
  • Odin: Myricom Myri-10G/MPICH-MX
  • Squall: Quadrics QsNetII

Asynchronous progress can be implemented by matching completely in the NIC (Quadrics QsNet and Cray SeaStar) or in the host with specific NIC support (Myricom MX). Some sort of progression could be done on top of a RDMA programming model, but would have a significant impact on short-message latency. Because matching is an integral part of the Send/Recv model, asynchronous implementation is easier in this context. Note that InfiniPath, even though it uses the Send/Recv model, always does a copy on the receive side for large messages, so it cannot overlap.

The graphs above were produced using the Sandia MPI Micro-Benchmark Suite (SMB).

Scalability

The biggest can of worms that the RDMA programming model brings to the table relates to scalability. RDMA is a connected model, i.e., one software entity called a Queue Pair (QP) in one process space is associated with one and only one such entity in a different process space. So, if you want to be able to communicate with all N processes in your MPI job, you need to use a different QP for each process except yourself. That's (N-1) QPs per process. Even with multiple processes per nodes, the number of QPs per RDMA-based NIC is large enough to accommodate all of them. However, this connected model directly affects the host memory footprint: each QP consumes host memory, so the total memory footprint grows linearly with the number of QPs. For example, it was not uncommon to see several gigabytes of memory required for large InfiniBand clusters. The following graph, which well illustrates this point, is from “InfiniBand Scalability in Open MPI“, Shipman et al, IPDPS, May 2006.

By contrast, the memory footprint of all Send/Recv-based interconnects is constant and independent of the number of processes in the MPI job.

Recently, the addition of the Shared Receive Queue (SRQ) concept, noted in the “Open MPI — SRQ” in the graph above, alleviates some of this scalability nightmare: a receive queue can be shared among several connections, thus consolidating the posted buffers used for the limited Send/Recv functionality. It is interesting to note that a shared receive queue is inherently a Send/Recv programming model feature, perhaps a sign that the native RDMA interconnects are slowly migrating to the more efficient Send/Recv programming model. However, SRQ does not address the overhead of initially establishing the connections, so a connection-on-demand mechanism is needed to hide the problem. This approach may work with MPI microbenchmarks, in which processes typically do not have to communicate with each peer in the MPI application, but this approach will not work well for many real-world MPI applications.

Conclusions

The RDMA programming model does not fit well with the two-sided semantic constraints of MPI or the Sockets interface. It's nothing new; it has been demonstrated before with previous incarnations of RDMA-based low-level communication layers such as VIA. However, the hype is on and the marketing message is wrongly promoting RDMA as the ultimate unifying programming model. Is the RDMA model completely useless? Of course not. It can be leveraged successfully for one-sided programming paradigms such as ARMCI (Aggregate Remote Memory Copy Interface) or UPC (Universal Parallel C), but these paradigms have yet to show better performance and ease of use than MPI.

History always repeats itself, so we can expect the current RDMA programming model to continue to struggle alongside the efficient Send/Recv model, and eventually to fade away.

The author would like to thank Charles Seitz and Loïc Prylli for their help in writing this article.

—–

Patrick Geoffray earned his Ph.D. at the University of Lyon, France, in 2001. His interests lie in high-performance computing. He is currently a Senior Software Architect at Myricom, in the Software Development Lab in Oak Ridge, TN. He is responsible for the design of the Myrinet Express (MX) message-passing system and its associated firmware implementations, and was earlier in charge of various middleware running on GM/Myrinet, including MPICH-GM and VIA-GM.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputer Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputer Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This