‘Not So Fast, Supercomputers,’ Say Software Programmers

By Steve Tally, Purdue University

May 28, 2007

The fastest of the fastest computers — supercomputers used at national research centers, research universities and major corporations — will soon gain even more performance by taking advantage of multi-core computing.

Despite the promise of almost unimagined computing power, however, even computing experts wonder whether this time the hardware developers have raced too far ahead of many programmers’ ability to create software.

Faisal Saied, senior research scientist for Information Technology at Purdue, says that parallel computing has been an esoteric skill limited to people involved with high-performance supercomputing. That is changing now that desktop computers and even laptops are multi-core.

“High-performance computing experts have learned to deal with this, but they are a fraction of the programmers,” Saied says. “In the future you won’t be able to get a computer that’s not multi-core, and as multi-core chips become ubiquitous, all programmers will have to learn new tricks.”

Even in high-performance computing there are areas that aren’t yet ready for the new multi-core machines.

“In industry, much of their high-performance code is not parallel,” Saied says. “These corporations have a lot of time and money invested in their software, and they are rightly worried about having to re-engineer that code base.”

Multi-core computers have more than one processing unit, or CPU, on a computer chip, each, in essence, a separate PC. In the next few years new high-performance computers will have dozens or hundreds of PCs on a chip, offering vast improvements in computing performance over current top machines.

Multi-core computers are required if computers are going to continue to increase in computing performance as they have over previous decades. This increased performance is needed for a variety of high-tech tasks, such as climate modeling, military weapons design, drug discovery and improving manufacturing.

But multi-core computers require parallel computer programs because each PC, or core, must get its own set of instructions. Meanwhile, much of the currently available software is not written to take advantage of multi-core computing.

For all of the amazing things that computers do, they do it all one thing at a time. The instructions are delivered in single file, as if passing through a single door. Parallel processing opens more doors, but also creates challenges because of the multiple instruction threads required.

“Imagine you had four golf balls and needed to hit four targets. If you had four people each throwing a ball at the same time, they could do it faster than one person alone. That’s the advantage of multi-core computing. Multiple PCs, all on the same chip, are working on multiple tasks. The difficulty comes in breaking the task into multiple components,” Saied says.

Steve Kirsch, an engineering fellow for Raytheon Systems Co., says that multi-core computing presents both the dream of infinite computing power and the nightmare of programming.

“The real lesson here is that the hardware and software industries have to pay attention to each other,” Kirsch says. “Their futures are tied together in a way that they haven’t been in recent memory, and that will change the way both businesses will operate.”

Gordon Moore, retired chairman and CEO of Intel Corp., famously observed that the number of components on an integrated chip would double every 24 months (often stated as every 18 months), and Moore’s Law has served as both a prescient prediction and an engineering goal for the information technology industry.

But about five years ago, researchers began seeing a discrepancy between the predicted performance from circuits and the actual computing capability in high-performance computing. Although the number of transistors on the circuits continued to increase, as predicted by Moore’s Law, actual performance remained about the same because of power and heat issues. This has become known as “Moore’s Gap.”

The problem with current chips is that the transistors leak power even when they are doing nothing, and with sequential processing there are a lot of processors waiting their turn, says Tilak Agerwala, vice president of systems at IBM Research.

“Currently, transistor performance is limited by power constraints causing microprocessor clock speeds to saturate and high-performance microprocessor cores to dissipate more power than simpler alternatives,” Agerwala says. “As the performance of a single thread of computation flattens out, multi-core processing will become critical to system performance growth.”

Computation is at a point where multi-thread programming is the only way to accelerate innovation and discovery, Agerwala says.

“We will deliver the levels of computing capability required to advance the fields of science and engineering,” Agerwala says. “Future supercomputers will effectively utilize many cores per chip and perhaps a million cores per system on multi-threaded, parallelized applications.”

Agerwala notes that IBM’s Blue Gene/L, the world’s most powerful supercomputer, already exploits 131,072 processor cores all working in parallel, using two cores per chip.

Chip makers Intel, IBM, AMD and Sun have all announced that they will soon begin producing multi-core chips. In February, Intel released research details about a chip with 80 cores, a fingernail sized chip that has the same processing power that in 1996 required a supercomputer with a 2,000-square-foot footprint and using 1,000 times the electrical power.

Kirsch says despite the promise of powerful new supercomputers, multi-core computing presents a problem for companies and researchers who depend on previously written software that has been steadily improving and evolving over the past few decades. “Our legacy software is a real concern to us,” he says.

Kirsch said that parallel programming for multi-core computers may even require new computer languages.

“Today we program in sequential languages,” he says. “Do we need to express our algorithms at a higher level of abstraction? Research into these areas is critical to our success.”

Researchers at Purdue, working closely with industrial collaborators, are developing new programming models and tools that simplify the task of writing programs for a multi-core platform, says Susanne Hambrusch, professor and head of Purdue’s Computer Science Department.

“Our programming languages researchers are exploring new programming paradigms and models,” Hambrusch says. “Our course on multi-core architectures is also preparing students for future software development positions. Purdue is clearly playing a defining role in this critical technology.”

Multi-core computers are beginning to appear for consumers, and computer scientists say this commodity approach to parallel computing will benefit consumers as well as users of high-performance computing.

Suresh Jagannathan, an associate professor of computer science at Purdue, has a positive outlook on the future of parallel programming in computing.

“There’s a thin line between pessimism and opportunity,” he says. “This is a definite opportunity. There is notable work here at Purdue to develop new programming languages, abstractions and implementations to harness parallelism and bring it into the mainstream.”

Jagannathan says the transition for desktop computers will take a different path than that of high-performance computing.

“HPC systems are on the bleeding edge of technology,” he says. “But it’s not the case that we’ve hit a brick wall. There are approaches available to us. In the long run, we will harness multi-core technology, and more programs will take advantage of it. When multi-core is ubiquitous, we expect the entire software stack — from applications all the way down to operating system kernels — to take advantage of the parallelism afforded by these architectures.”

Saied says that although the difficulty of writing parallel software is currently an issue in high-performance computing, that issue will reach desktop computing soon enough.

“In five or six years, laptop computers will have the same capabilities, and face the same obstacles, as today’s supercomputers,” Saied says. “This challenge will face people who program for desktop computers, too. People who think they have nothing to do with supercomputers and parallel processing will find out that they need these skills, too.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire