AMD Climbs Back in the Ring

By Michael Feldman

September 14, 2007

After talking up its quad-core processors for more than a year, AMD finally released them into the wild this week. On Monday, the company kicked off a public relations extravaganza that celebrated the global launch of its new quad-core processors, which included events in Bangalore, Barcelona, Beijing, San Francisco, Seoul, Taipei and Tokyo.

Outmaneuvered by its larger rival over the past year, AMD has seen its worldwide server market share shrink from about 25 percent to 13 percent and has witnessed its bottom line bleed into the red. Since Intel’s quad-core offerings have been available for almost a year, AMD has been under increasing pressure to deliver its quads into the market. AMD’s six-month delay in getting its chips ready has given Intel the opportunity to romp freely in the x86 quad-core server space. AMD is hoping the new Opterons will not only stop the hemorrhaging, but will also start to reverse Intel’s momentum.
 
“Frankly it’s the biggest thing since the original Operton launch,” said Steve Demski, AMD Opteron Product Manager, Server Workstation Division. “In fact, it might be even bigger than the original.”

When AMD introduced the new processor back in 2003, there weren’t a lot of opportunities for customers to purchase Opteron-equipped computers. Today, Opterons are found on 55 Tier 1 platforms as well as additional regional platforms worldwide. From that perspective, the new quad-cores represent a much larger opportunity for AMD than its offerings in years past.

The initial launch includes nine offerings: five two-socket processors (Opteron 23xx), which range from 1.7 GHz to 2.0 GHz in speed, and four four-socket processors (Opteron 83xx), which range from 1.8 to 2.0 GHz. They are being priced aggressively against their Intel counterparts. For example, the Opteron 8350 is listed at $1019 versus the comparable Xeon 7320 at $1177. Since HyperTransport and the integrated memory controller gives AMD a performance edge at the four-socket and above scale, the high-end Opterons should be very competitive. In the more mainstream two-socket market, the Opteron 2350 is listed at $389; its Xeon 5345 counterpart is listed at $455. Intel could decide to lower its prices now or wait for its 45nm Harpertown processors (due in November) to get a better price-performance position against the new Opterons. The quad-core competition is just getting started.

Besides just putting four cores on a die, AMD has made a number of other improvements in the design. The AMD engineers accelerated the floating point unit significantly. According to Demski, they’ve quadrupled raw FP performance compared to the previous generation. This was accomplished by doubling the FP pipeline from 64 bits to 128 bits and doubling the data and instruction fetch bandwidth. They’ve also added support for misaligned SSE operations, which should save a clock cycle on some instructions.

The on-die memory controller has been completely redesigned. The new controller has deeper buffers to play with, is able to prefetch into L1 cache instead of L2 cache, and has incorporated an optimized DRAM paging scheme. In addition, the 128-bit memory controller can be configured via a BIOS setting into two 64-bit channels that operate independently. This enables an application to read and write data in parallel. Overall, AMD says they’ve achieved 50 percent better memory bandwidth in the new quad-cores compared to their dual-core brethren. And they’re going to need all that bandwidth, since there are now twice as many cores contending for memory.

AMD also put a lot of thought into minimizing energy consumption by taking advantage of the “native” quad-core implementation. For example, the clock frequencies on each of the four cores can be adjusted independently, based on an individual core’s workload. The new chips also make much more aggressive use of clock gating, so that areas of the chip can be disabled when not in use. In addition, AMD has split the power supplied to the memory controller from the power supplied to the cores. This enables a 200 MHz increase in the memory bus clock, which translates into better memory performance. It also allows for better granularity of power management since it decouples memory needs from computational needs. For example, an application running in a two processor system, but which only requires the cores on one CPU, is able to access memory on the other CPU, with those processor’s cores effectively turned off.

To go along with the new emphasis on energy conservation, AMD has decided to change the way it measures power consumption. In a nutshell, AMD is switching from a Thermal Design Power (TDP) metric to an Average CPU Power (ACP) metric. AMD’s TDP will still be defined as the maximum theoretical power used by the processor, and is only intended to be used by system engineers for determining thermal design limits. ACP will represent the maximum power the chip will draw under real-world conditions. It’s derived by running high utilization workloads such as TPC-C, STREAM, and various SPEC benchmarks.

Looking at the quad-core offerings AMD introduced this week: the standard processors have a TDP of 95 watts, with an ACP of 75 watts; the low-power processors — what the company calls its high-efficiency line — have a TDP of 68 watts and an ACP of 55 watts.

AMD claims that ACP is similar to Intel’s TDP. And while Intel’s TDP is almost certainly not equivalent to AMD’s TDP, it’s not clear if Intel’s TDP is equivalent to ACP. Confused? For the end-user, the best metric will be plugging the system into the wall, running the applications, and measuring the power usage.

AMD provided some benchmark comparisons for a number of synthetic and real-world HPC-type workloads. Pitting its 2.0 GHz Opteron 2350 against the 2.3 GHz Xeon 5345, AMD reported that they beat the competition by anywhere from 7 to 189 percent, depending upon the workload. Independent testing from AnandTech (www.anandtech.com), using the same chip matchup, showed more mixed results. In these tests, the Xeon prevailed in the Linpack benchmark (using Intel’s own Math Kernel Library), while the Opteron had a slight edge with a 3D rendering code. AnandTech’s conclusion was that Intel and AMD are about equal in raw floating point power, but the Opterons have the edge when the application needs to access main memory a lot.

Neither set of tests was applied to the four-socket versions of the processors to be used in multiprocessor (MP) servers. Up until last week, Intel didn’t have an MP solution on its latest Core architecture. But with the Tigerton Xeon introduction, it’s now possible to match the 83xx Opterons against the 73xx Xeons. Because of the inherently better scalability of AMD’s architecture, most analysts believe that the Opteron should still be the one to beat in multiprocessor server space. But for single-thread performance, the Xeons will continue to dominate.

Since Intel’s next-generation Xeon Harpertown processors are expected to come online later this year, the longer-term success of AMD’s quads will depend upon how quickly the company can ramp up clock speeds. “Special Edition” quad-core Opterons are already in the works and scheduled for release in Q4. Those CPUs will start at 2.3 GHz and go up from there. Even the standard and low-power processors are expected to get speed bumps before the end of 2007. If the quad-core Opterons can stay competitive on price and performance over the next six months, AMD should achieve the rebound it hoped for and then some.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This