AMD Climbs Back in the Ring

By Michael Feldman

September 14, 2007

After talking up its quad-core processors for more than a year, AMD finally released them into the wild this week. On Monday, the company kicked off a public relations extravaganza that celebrated the global launch of its new quad-core processors, which included events in Bangalore, Barcelona, Beijing, San Francisco, Seoul, Taipei and Tokyo.

Outmaneuvered by its larger rival over the past year, AMD has seen its worldwide server market share shrink from about 25 percent to 13 percent and has witnessed its bottom line bleed into the red. Since Intel’s quad-core offerings have been available for almost a year, AMD has been under increasing pressure to deliver its quads into the market. AMD’s six-month delay in getting its chips ready has given Intel the opportunity to romp freely in the x86 quad-core server space. AMD is hoping the new Opterons will not only stop the hemorrhaging, but will also start to reverse Intel’s momentum.
 
“Frankly it’s the biggest thing since the original Operton launch,” said Steve Demski, AMD Opteron Product Manager, Server Workstation Division. “In fact, it might be even bigger than the original.”

When AMD introduced the new processor back in 2003, there weren’t a lot of opportunities for customers to purchase Opteron-equipped computers. Today, Opterons are found on 55 Tier 1 platforms as well as additional regional platforms worldwide. From that perspective, the new quad-cores represent a much larger opportunity for AMD than its offerings in years past.

The initial launch includes nine offerings: five two-socket processors (Opteron 23xx), which range from 1.7 GHz to 2.0 GHz in speed, and four four-socket processors (Opteron 83xx), which range from 1.8 to 2.0 GHz. They are being priced aggressively against their Intel counterparts. For example, the Opteron 8350 is listed at $1019 versus the comparable Xeon 7320 at $1177. Since HyperTransport and the integrated memory controller gives AMD a performance edge at the four-socket and above scale, the high-end Opterons should be very competitive. In the more mainstream two-socket market, the Opteron 2350 is listed at $389; its Xeon 5345 counterpart is listed at $455. Intel could decide to lower its prices now or wait for its 45nm Harpertown processors (due in November) to get a better price-performance position against the new Opterons. The quad-core competition is just getting started.

Besides just putting four cores on a die, AMD has made a number of other improvements in the design. The AMD engineers accelerated the floating point unit significantly. According to Demski, they’ve quadrupled raw FP performance compared to the previous generation. This was accomplished by doubling the FP pipeline from 64 bits to 128 bits and doubling the data and instruction fetch bandwidth. They’ve also added support for misaligned SSE operations, which should save a clock cycle on some instructions.

The on-die memory controller has been completely redesigned. The new controller has deeper buffers to play with, is able to prefetch into L1 cache instead of L2 cache, and has incorporated an optimized DRAM paging scheme. In addition, the 128-bit memory controller can be configured via a BIOS setting into two 64-bit channels that operate independently. This enables an application to read and write data in parallel. Overall, AMD says they’ve achieved 50 percent better memory bandwidth in the new quad-cores compared to their dual-core brethren. And they’re going to need all that bandwidth, since there are now twice as many cores contending for memory.

AMD also put a lot of thought into minimizing energy consumption by taking advantage of the “native” quad-core implementation. For example, the clock frequencies on each of the four cores can be adjusted independently, based on an individual core’s workload. The new chips also make much more aggressive use of clock gating, so that areas of the chip can be disabled when not in use. In addition, AMD has split the power supplied to the memory controller from the power supplied to the cores. This enables a 200 MHz increase in the memory bus clock, which translates into better memory performance. It also allows for better granularity of power management since it decouples memory needs from computational needs. For example, an application running in a two processor system, but which only requires the cores on one CPU, is able to access memory on the other CPU, with those processor’s cores effectively turned off.

To go along with the new emphasis on energy conservation, AMD has decided to change the way it measures power consumption. In a nutshell, AMD is switching from a Thermal Design Power (TDP) metric to an Average CPU Power (ACP) metric. AMD’s TDP will still be defined as the maximum theoretical power used by the processor, and is only intended to be used by system engineers for determining thermal design limits. ACP will represent the maximum power the chip will draw under real-world conditions. It’s derived by running high utilization workloads such as TPC-C, STREAM, and various SPEC benchmarks.

Looking at the quad-core offerings AMD introduced this week: the standard processors have a TDP of 95 watts, with an ACP of 75 watts; the low-power processors — what the company calls its high-efficiency line — have a TDP of 68 watts and an ACP of 55 watts.

AMD claims that ACP is similar to Intel’s TDP. And while Intel’s TDP is almost certainly not equivalent to AMD’s TDP, it’s not clear if Intel’s TDP is equivalent to ACP. Confused? For the end-user, the best metric will be plugging the system into the wall, running the applications, and measuring the power usage.

AMD provided some benchmark comparisons for a number of synthetic and real-world HPC-type workloads. Pitting its 2.0 GHz Opteron 2350 against the 2.3 GHz Xeon 5345, AMD reported that they beat the competition by anywhere from 7 to 189 percent, depending upon the workload. Independent testing from AnandTech (www.anandtech.com), using the same chip matchup, showed more mixed results. In these tests, the Xeon prevailed in the Linpack benchmark (using Intel’s own Math Kernel Library), while the Opteron had a slight edge with a 3D rendering code. AnandTech’s conclusion was that Intel and AMD are about equal in raw floating point power, but the Opterons have the edge when the application needs to access main memory a lot.

Neither set of tests was applied to the four-socket versions of the processors to be used in multiprocessor (MP) servers. Up until last week, Intel didn’t have an MP solution on its latest Core architecture. But with the Tigerton Xeon introduction, it’s now possible to match the 83xx Opterons against the 73xx Xeons. Because of the inherently better scalability of AMD’s architecture, most analysts believe that the Opteron should still be the one to beat in multiprocessor server space. But for single-thread performance, the Xeons will continue to dominate.

Since Intel’s next-generation Xeon Harpertown processors are expected to come online later this year, the longer-term success of AMD’s quads will depend upon how quickly the company can ramp up clock speeds. “Special Edition” quad-core Opterons are already in the works and scheduled for release in Q4. Those CPUs will start at 2.3 GHz and go up from there. Even the standard and low-power processors are expected to get speed bumps before the end of 2007. If the quad-core Opterons can stay competitive on price and performance over the next six months, AMD should achieve the rebound it hoped for and then some.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire