eScience: It’s Really About People

By Nicole Hemsoth

October 26, 2007

Even though the buzz about eScience often focuses on massive hardware, user interfaces, storage capacity and other technical issues, in the end, the ability of eScience to serve the needs of scientific research teams boils down to people: the ability of the builders of the infrastructure to communicate with its users and understand their needs and the realities of their work cultures.

The builders of eScience infrastructure “need to talk about fostering, rather than building infrastructure,” said Alex Voss of the National Center for e-Social Science in Manchester, UK, and research theme leader at the e-Science Institute in Edinburgh, UK. There are social aspects to research that must be recognized — from understanding how research teams work and interact to realizing that research often does not involve the kinds of large, interdisciplinary projects engaged in by virtual organizations, but rather individual work and ad-hoc, flexible forms of collaboration within wider communities.

Voss was one of four panelists who discussed how to reduce the barriers that still inhibit scientists from becoming e-scientists. The discussion was part of the 2007 Microsoft eScience Workshop, hosted by the Renaissance Computing Institute (RENCI), in Chapel Hill, NC, Oct. 21-23. Also offering their thoughts on the barriers to broad eScience adoption were Ian Foster, director of the Computation Institute at the University of Chicago and Argonne National Laboratory, Phil Papadopoulus, director of grid and cluster computing at the San Diego Supercomputer Center, and May Wang of the Emory-Georgia Tech Nanotechnology Center for Personalized and Predictive Oncology. All the panelists agreed that scientific communities must have easy-to-use applications and interfaces and easy access to stored data to become users of eScience grids. And they concurred that both grid researchers and users must work on cross-disciplinary and cross-cultural communications.

“We need applications, that’s obvious,” said Foster. “But perhaps we need to put more effort into communicating how these applications work. That’s probably the single thing we can do that will make the biggest difference: go out and tell the story about successes when applications work, and also tell them when applications don’t work, so they can avoid the pitfalls.”

Foster noted wryly that in the past, “science advanced one funeral at a time,” allowing new ideas to take hold only as those who advocated older paradigms passed away. On a more positive note, he said the ubiquitous connectivity offered by the Internet, the Web and grids “allows us to reach out, to share our interests, make discoveries, and apply new methods more rapidly and effectively than in the past.”

Papadopoulus pointed to both technical and social barriers to the adoption of eScience. Although raw storage is cheap, access to data isn’t, he said, and the eScience community must address questions about how to access data that is stored remotely, stored offline or behind firewalls. Papadopoulus also challenged infrastructure creators to develop systems that are repeatable. A set of software tools should be transferable to any user’s work environment, without the aid of a systems administrator. The steps of a workflow should be repeatable and easy to communicate to another user.

In addition, he noted that the social realities of scientific communities can inhibit the adoption of eScience. Scientists in some domains have only recently started to share their data, a process that is the norm in well-established eScience domains, such as high-energy physics. The grid research community also has its customs that can inhibit broader adoption, according to Papadopoulos.

“Grid research is research, and researchers are rewarded for their research, for coming up with new ideas on how to use network technology and for writing papers, not really for easing the use of software,” he said.

Wang, an expert in biocomputing and bioinformatics, speculated on why the biomedical community has been relatively slow to adopt eScience practices. She stressed that eScience tools must be more intuitive for the biomedical community to use them. These researchers — often doctors with clinical practices — have little in-depth knowledge of computing and no time to learn it, said Wang. They are problem driven and will turn to eScience only if they see that it will help them address the big questions in medicine. In addition, the medical community would likely feel more at home with eScience if some general computer science were part of their educational curriculum.

“Teaching the basics of computer science, learning some of the computer science languages and how to use computer tools to solve problems would help to overcome some of the barriers,” said Wang. “Now, many of our scientists wouldn’t even know how to begin a dialogue with a computer scientist. But they can learn by doing if they start at a young age.”

More than 260 scientists, industry and university-based grid researchers, faculty and administrators with funding agencies attended the Microsoft eScience Workshop, which was co-chaired by RENCI Director Dan Reed and Microsoft’s Vice President of External Research Tony Hey. Participants came from across the U.S., Europe, Canada, South America and Australia.

In the long run, the lasting effects of high-speed networks, data stores, computing systems, sensor networks, and collaborative technologies that make eScience possible will be up to the people who create it and use it, said Reed in his address to attendees.

“The instrumented life — in which we have biomarkers for disease risks, real-time monitoring of our food intake and exercise routines, analysis of air quality and other environmental factors — could seem like 1984 rather than 2010,” said Reed. “On the other hand, it could have enormous implications for improving our health and our lives. Is it good or bad? Probably a little of both.”

The conference wrapped up on Tuesday with a keynote session featuring Hey and David Heckerman, also of Microsoft Research. Heckerman told the audience about research that applies his machine-learning technologies to computational biology and personalized medicine. The work could play a role in developing effective vaccines for HIV and AIDS. Heckerman’s statistical models, sometimes called graphical models or Bayesian networks, can also be used for genome-wide association studies — the search for connections between human DNA and disease.

Hey’s talk, called eScience and Digital Scholarship, looked towards tools and technologies required for the whole eScience Data Life Cycle and a coming revolution in scholarly communication. He concluded that the future of eScience will be a mix of software and services “in the cloud.”

More information

Microsoft eScience Workshop at RENCI: https://www.mses07.net/main.aspx
Computation Institute: www.ci.uchicago.edu
Emory-Georgia Tech Nanotechnology Center for Personalized and Predictive Oncology: http://www.wcigtccne.org/index.php
e-Science Institute: http://www.esi.ac.uk
National Center for e-Social Science: http://www.ncess.ac.uk
RENCI: http://www.renci.org
San Diego Supercomputer Center: http://www.sdsc.edu

—–

Source: RENCI

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This