eScience: It’s Really About People

By Nicole Hemsoth

October 26, 2007

Even though the buzz about eScience often focuses on massive hardware, user interfaces, storage capacity and other technical issues, in the end, the ability of eScience to serve the needs of scientific research teams boils down to people: the ability of the builders of the infrastructure to communicate with its users and understand their needs and the realities of their work cultures.

The builders of eScience infrastructure “need to talk about fostering, rather than building infrastructure,” said Alex Voss of the National Center for e-Social Science in Manchester, UK, and research theme leader at the e-Science Institute in Edinburgh, UK. There are social aspects to research that must be recognized — from understanding how research teams work and interact to realizing that research often does not involve the kinds of large, interdisciplinary projects engaged in by virtual organizations, but rather individual work and ad-hoc, flexible forms of collaboration within wider communities.

Voss was one of four panelists who discussed how to reduce the barriers that still inhibit scientists from becoming e-scientists. The discussion was part of the 2007 Microsoft eScience Workshop, hosted by the Renaissance Computing Institute (RENCI), in Chapel Hill, NC, Oct. 21-23. Also offering their thoughts on the barriers to broad eScience adoption were Ian Foster, director of the Computation Institute at the University of Chicago and Argonne National Laboratory, Phil Papadopoulus, director of grid and cluster computing at the San Diego Supercomputer Center, and May Wang of the Emory-Georgia Tech Nanotechnology Center for Personalized and Predictive Oncology. All the panelists agreed that scientific communities must have easy-to-use applications and interfaces and easy access to stored data to become users of eScience grids. And they concurred that both grid researchers and users must work on cross-disciplinary and cross-cultural communications.

“We need applications, that’s obvious,” said Foster. “But perhaps we need to put more effort into communicating how these applications work. That’s probably the single thing we can do that will make the biggest difference: go out and tell the story about successes when applications work, and also tell them when applications don’t work, so they can avoid the pitfalls.”

Foster noted wryly that in the past, “science advanced one funeral at a time,” allowing new ideas to take hold only as those who advocated older paradigms passed away. On a more positive note, he said the ubiquitous connectivity offered by the Internet, the Web and grids “allows us to reach out, to share our interests, make discoveries, and apply new methods more rapidly and effectively than in the past.”

Papadopoulus pointed to both technical and social barriers to the adoption of eScience. Although raw storage is cheap, access to data isn’t, he said, and the eScience community must address questions about how to access data that is stored remotely, stored offline or behind firewalls. Papadopoulus also challenged infrastructure creators to develop systems that are repeatable. A set of software tools should be transferable to any user’s work environment, without the aid of a systems administrator. The steps of a workflow should be repeatable and easy to communicate to another user.

In addition, he noted that the social realities of scientific communities can inhibit the adoption of eScience. Scientists in some domains have only recently started to share their data, a process that is the norm in well-established eScience domains, such as high-energy physics. The grid research community also has its customs that can inhibit broader adoption, according to Papadopoulos.

“Grid research is research, and researchers are rewarded for their research, for coming up with new ideas on how to use network technology and for writing papers, not really for easing the use of software,” he said.

Wang, an expert in biocomputing and bioinformatics, speculated on why the biomedical community has been relatively slow to adopt eScience practices. She stressed that eScience tools must be more intuitive for the biomedical community to use them. These researchers — often doctors with clinical practices — have little in-depth knowledge of computing and no time to learn it, said Wang. They are problem driven and will turn to eScience only if they see that it will help them address the big questions in medicine. In addition, the medical community would likely feel more at home with eScience if some general computer science were part of their educational curriculum.

“Teaching the basics of computer science, learning some of the computer science languages and how to use computer tools to solve problems would help to overcome some of the barriers,” said Wang. “Now, many of our scientists wouldn’t even know how to begin a dialogue with a computer scientist. But they can learn by doing if they start at a young age.”

More than 260 scientists, industry and university-based grid researchers, faculty and administrators with funding agencies attended the Microsoft eScience Workshop, which was co-chaired by RENCI Director Dan Reed and Microsoft’s Vice President of External Research Tony Hey. Participants came from across the U.S., Europe, Canada, South America and Australia.

In the long run, the lasting effects of high-speed networks, data stores, computing systems, sensor networks, and collaborative technologies that make eScience possible will be up to the people who create it and use it, said Reed in his address to attendees.

“The instrumented life — in which we have biomarkers for disease risks, real-time monitoring of our food intake and exercise routines, analysis of air quality and other environmental factors — could seem like 1984 rather than 2010,” said Reed. “On the other hand, it could have enormous implications for improving our health and our lives. Is it good or bad? Probably a little of both.”

The conference wrapped up on Tuesday with a keynote session featuring Hey and David Heckerman, also of Microsoft Research. Heckerman told the audience about research that applies his machine-learning technologies to computational biology and personalized medicine. The work could play a role in developing effective vaccines for HIV and AIDS. Heckerman’s statistical models, sometimes called graphical models or Bayesian networks, can also be used for genome-wide association studies — the search for connections between human DNA and disease.

Hey’s talk, called eScience and Digital Scholarship, looked towards tools and technologies required for the whole eScience Data Life Cycle and a coming revolution in scholarly communication. He concluded that the future of eScience will be a mix of software and services “in the cloud.”

More information

Microsoft eScience Workshop at RENCI: https://www.mses07.net/main.aspx
Computation Institute: www.ci.uchicago.edu
Emory-Georgia Tech Nanotechnology Center for Personalized and Predictive Oncology: http://www.wcigtccne.org/index.php
e-Science Institute: http://www.esi.ac.uk
National Center for e-Social Science: http://www.ncess.ac.uk
RENCI: http://www.renci.org
San Diego Supercomputer Center: http://www.sdsc.edu

—–

Source: RENCI

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

HPC Pioneer Gordon Bell Passed Away

May 22, 2024

Legendary computer scientist Gordon Bell passed away last Friday at his home in Coronado, CA. He was 89. The New York Times has a nice tribute piece. A long-time pioneer with Digital Equipment Corp, he pushed hard for de Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC even earned a slide in Kathy Yelick’s opening keynote — Bey Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Core42 Is Building Its 172 Million-core AI Supercomputer in Texas

May 20, 2024

UAE-based Core42 is building an AI supercomputer with 172 million cores which will become operational later this year. The system, Condor Galaxy 3, was announced earlier this year and will have 192 nodes with Cerebras Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire