Run-Up to Petaflops

By Thomas Sterling and Chirag Dekate

June 18, 2008

There is no other way to characterize this time in high performance computing: 2008 will be remembered as “the year” — the year that one petaflops was achieved in Linpack performance. It is a milestone that has been anticipated for almost a decade and a half, and one that was accomplished through the synthesis of two big trends that have emerged as the driving forces for HPC in the last few years — multicore and heterogeneous computing.

But there is much more to the events, technical advances, and new initiatives in HPC internationally throughout the last year than simply a single number, no matter how dramatic the milestone. The theme for this year, “Run-Up to Petaflops,” has involved a series of interrelated advances in technology, component architecture, and planning for large scale systems that has inaugurated the Petaflops Era. Briefly some of these contributing events are considered here.

This year has marked the next stage in the transition to “multicore, the new Moore’s Law” which was last year’s theme. Four-core sockets are replacing dual-core as we enter the second generation of the multicore technology base. AMD’s Barcelona quad-core chips are now available with new systems being configured to support them and some early generation systems being upgraded to exploit them for a mid-life kicker. The Intel Clovertown chip, also a quad-core Xeon processor, is now being incorporated as well. From IBM, the new Power6 architecture on 65 nanometer technology is designed to be configured with up to 16 cores and is establishing new industry clock rates from 3.5 GHz to 4.7 GHz.

The move to 45 nanometer technology has been a hallmark of 2008 with major vendor offerings being announced and prepared for delivery for the second half of this year. Intel’s new fabrication line in Chandler, Ariz., will provide high-volume manufacturing of 45 nanometer components. Intel introduced its hafnium-based high-k metal gate silicon technology for unprecedented low-leakage current. The Dunnington Intel processor will be produced by this process, and will be available in the second half of this year with six cores per socket. AMD’s 45 nanometer fab in Dresden, Germany, which uses full-field EUV lithography, will produce the quad-core “Shanghai” by the second half of 2008. This is to be followed by the six-core Istanbul processor in 2009. IBM is projected to release the Power7 Processor in 2010, which has been developed in part with DARPA HPCS funding.

Heterogeneous computing in its various forms has captured the imagination of the supercomputing community with the excitement of outstanding raw performance, tempered only by a realistic concern about programming methodologies. ClearSpeed has introduced its second generation SIMD attached array processor, significantly improving its interconnect bandwidth and optimizing the average power dissipation. The ClearSpeed accelerators are an important component in the Japanese TSUBAME 100 teraflops system. NVIDIA is moving toward a GPU in every PC with its GeForce series delivering 10x or better speed-ups on some application kernels. IBM has introduced its important upgrade to the original Cell architecture used in the Sony Playstation3 game product. The new PowerXCell 8i processor chip combines both heterogeneity and multicore to provide a tour de force in processor technology. But most important to the supercomputing community and market is its upgraded SPE core that includes full 64-bit floating point arithmetic units at 12.8 gigaflops peak performance. That works out to 100 gigaflops across the eight SPE cores, which are integrated with a separate PowerPC core for general services.

Over the last year, the international community has established a multi-initiative, world-wide set of programs to harness the power of these technologies to deliver petaflops capability into the hands of real-world users in science, technology, commerce, and defense applications. In the last year, the fastest general-purpose machine, Blue Gene/L at LLNL, was upgraded by IBM to exceed half a petaflops peak performance, delivering 478 teraflops of sustained Linpack performance. The fastest machine in Europe is the next generation of this family of systems, Blue Gene/P at the Julich Research Centre in Germany. Called “JUGENE,” this system of almost a quarter of a petaflops peak capability has delivered 167 teraflops sustained with 32 terabytes of main memory. This new Blue Gene generation system incorporates the new 850 MHz quad-core PowerPC 450.

The trend of upgrading existing systems has proved to be an important path to extending the useful lifetime of major systems, providing superior capability at a fraction of the cost to end users and agencies. The 124 teraflops Red Storm system at Sandia National Laboratory that was the prototype for the major line of XT Cray systems is scheduled to be augmented to a peak capability of between 250 to 284 teraflops, using quad-core AMD Opterons. And the Earth Simulator, one of the most important systems on the TOP500 list is to be upgraded by NEC to a full capability of 131 teraflops by early next year.

In Japan, the new Keisoku program will be managed by Riken and will involve the collaboration of Hitachi, NEC, and Fujitsu. The goal is to build a 10 petaflops machine to be deployed in Kobe in 2012.

The U.S. National Science Foundation has selected IBM to provide its leadership-class “Blue Waters” system to be deployed at UIUC in 2011. That system is to be based on technology developed under the IBM PERCS project, which is sponsored by the DARPA HPCS Program. NSF will also install a second mid-range HPC system in Tennessee based on advanced Cray architecture.

In 2007, India deployed its first top 10 system, named “Eka,” at the Computational Research Laboratories, Tata Sons. That machine uses the HP Blade Cluster Platform 3000 BL460c and delivers a peak performance of 170 teraflops. China continues its steady advance in the HPC arena with the installation of a series of significant terascale systems, including a 38 teraflops Intel Woodcrest-based IBM BladeCenter. Equally interesting is the development of their Loongson-2E CPU chip on 90 nanometer process technology.

But the big news — well timed for ISC — is Roadrunner, the fastest machine in the world and the first system to achieve one petaflops Linpack performance. Roadrunner, which will be deployed at Los Alamos National Laboratory, was developed under DOE contract by IBM and marks the first major system to rely principally on a heterogeneous architecture to achieve its performance. Based on the IBM PowerXCell 8i described above, and the AMD Opteron, this breakthrough machine delivers 1.3 petaflops peak performance.

Even as the achievement of a petaflops is being heralded as the entry into a new era of high performance computing, the challenges of exascale computing are being explored by the community. As reported last year, both DOE and DARPA undertook to study the application, technology, system requirements, and implications of sustained exaflops computer implementation and operation. The studies demonstrated the importance of such capability to many applications critical to science, technology, and society. But these early investigations also exposed the daunting technological challenges confronting any such endeavor.

While numbers can vary significantly depending on underlying assumptions, representative estimates from a number of sources suggest power consumption in the range of 120 megawatts (+/- 50 percent), concurrency at the multi-billion-way level of parallelism, number of cores between 100 million and 500 million, and system-wide latencies in the tens of thousands of cycles.

The expected dates for such systems are as aggressive as the middle of next decade. Extrapolation of the TOP500 list suggests a deployment at the end of the decade. With concerted effort, an ambitious but not unrealistic deployment could occur in 2018. But this will require real research investment programs to be initiated within the next year and a half. It is hard to believe, but it may be possible that the authors will be writing an HPCwire article a decade from now about the year that was the “Run-Up to Exaflops.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement... Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This