Intel Lifts the Curtain on Larrabee

By Michael Feldman

August 4, 2008

In a press briefing on Friday, Intel representatives revealed some of the architectural details of the company’s much talked-about Larrabee processor. The new design is the chipmaker’s first manycore x86 platform and represents what could be described as a general-purpose, x86 vector processor, combining features from both GPUs and CPUs. The architecture is the culmination of more than three years of R&D accomplished under Intel’s terascale research program. The company will present a paper at the SIGGRAPH 2008 conference next week in Los Angeles, which will elaborate the design of the processor and its programming model.

The idea behind Larrabee was to jump to the front of the line in GPU programmability, while at the same time deliver an x86 vector processor that can be applied to a wide range of high throughput applications. The new architecture’s applicability to visual computing is a result of its general suitability for HPC applications, rather than any GPU-specific capabilities. In fact, Intel characterizes Larrabee as a generic high throughput processor, rather than a GPU. Emphasizing Intel’s intentions for the new architecture, Larry Seiler, senior principal engineer on the project said that “Larrabee is going to revolutionize graphics processing and supercomputing.”

For the most part, Friday’s briefing left out product plans for the new processor. Neither core count, clock speed, nor power consumption was mentioned, and product launch dates were only talked about in the general timeframe of “2009 or 2010.” A lot of the discussion focused on Larrabee’s role as a high-end GPU for the PC, its initial target market. By entering the high-end volume graphics space, Intel hopes to extend its strong position in the mobile GPU market to desktop gaming.

If it meets with success there, Intel is almost certain to push the platform into the HPC market, where its vector capabilities and x86 compatibility would make it an instant contender against other high-end accelerators like NVIDIA’s Tesla products (and other CUDA-supported GPUs), AMD’s FireStream GPU offering, Cell processor systems, ClearSpeed co-processors, and even FPGA accelerators. But in Larrabee’s case, no external host processor will be required since CPU logic is already on the chip.

Unlike the typical GPU of today, Larrabee has a number of important differences. The overall layout of the chip consists of a number of x86 cores connected to each other via a high speed ring bus, 512 bits wide in each direction. The cores are derived from Intel’s Pentium processor, with its short, in-order execution pipelines. In this case though, each core executes up to four threads at a time and contains both a scalar and a vector unit, with the latter able to execute 16 32-bit operations per clock tick. Since Larrabee is basically a CPU architecture, features like context switching, preemptive multitasking, virtual memory and page swapping are built in. And because thread management is done in software, latency can be hidden with conventional parallelization techniques.

Each core contains Level 1 instruction and data caches, with Level 2 cache provided on chip as well. L2 cache is shared between cores, with 256 KB allocated to each one. Unlike GPUs, cache coherency is maintained throughout the cache hierarchy, which enables a software friendly framework for inter-processor communication an efficient mechanism to share data between application threads. Memory controller (or controllers) are on-chip too, as well as application-specific fixed function units.

In general though, a Larrabee processor intended for graphics workload uses very little fixed function hardware. Almost all processing is intended to be performed with software on the x86 cores. In certain cases, notably the texture shader, Intel has added fixed function hardware to boost graphics performance. The rationalization for a mostly graphics software pipeline is that requirements for various functional units (vertex shading, rasterization, pixel shading, etc.) can vary quite a bit from application to application. So workload balancing will be easier to achieve with general-purpose silicon plus software, as opposed to dedicated hardware. That also means that application performance should scale more evenly as additional cores are placed on the die.

To even the playing field in the graphics space, Intel will support DirectX and OpenGL so that existing applications can be ported more easily. A Larrabee-specific API will also be provided for more adventurous programmers who are interested in taking advantage of the full capabilities of the processor. Access to the vector instruction set, which has yet to be described, will be available via C language intrinsics. The vector unit will support IEEE single and double precision floating point operations as well as 32-bit integers.

Even though Larrabee is being characterized as a manycore chip, the first versions will probably have tens of core, rather than the hundreds of cores currently present in the NVIDIA and AMD (ATI) GPUs. Depending on clock speed, Larrabee’s raw performance may even be less than that of traditional GPUs. For example, even with the impressive 16 single precision operations per clock (per core), a 1.0 GHz Larrabee chip would need 62 cores to equal the performance of the latest teraflop GPUs from NVIDIA and AMD that will ship this year. Presumably Intel will find the formula to at least match the performance of the competition. But its claim of superior programmability may resonate more than raw performance, especially with software vendors who are looking for more flexibility in developing new types of applications, graphics or otherwise.

Introducing a new architecture into a mature market is always a risky proposition, which Intel itself learned from its Itanium adventure. But the chip vendor is a huge force in the industry and has more than a year to line up ISV and OEM support for Larrabee. Its success in the graphics space will likely determine if the processor becomes a commodity part for HPC. In a way, that’s unfortunate, since Larrabee is probably a better fit overall for high-end technical computing than for the more narrow domain of visual computing. Either way, the competition among Intel, AMD and NVIDIA is bound to get more interesting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google use AI to help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire