NVIDIA Takes Aim at GPU Acceleration for Bioscience Applications

By Michael Feldman

January 14, 2010

NVIDIA has announced the Tesla Bio Workbench, a new program designed to bring together the computational components needed to run GPU-accelerated bioscience applications. The rationale is the same one NVIDIA’s been touting ever since it got into the high performance computing business: take advantage of the superior performance of the GPU in order to lower the entry point for HPC. In this case, they’ve assembled a GPU-centric workbench specifically designed for life science researchers and scientists.

In a nutshell, the Tesla Bio Workbench includes of an array of GPU-capable bioscience codes, a community Web site for downloading the codes and providing a forum for exchanging information, and, of course, recommendations for NVIDIA Tesla GPU -equipped workstations and clusters. The strategy is to educate the biotech community that applications and hardware are here and within the reach of more researchers than ever before.

Over the past couple of years, the application set for computational biology codes that are GPU friendly has grown tremendously, thanks mainly to CUDA ports of the CPU versions of the software. This has produced a large number of popular molecular dynamics and quantum chemistry software packages that can now be run on NVIDIA GPUs. These include such codes as AMBER, GROMACS, NAMD, TeraChem, and VMD, among others. A number of bioinformatics codes like CUDA-SW++ (Smith-Waterman), GPU-HMMER, and MUMmerGPU, are also available. All of these can be downloaded via the Tesla Bio Workbench from their respective owner sites. Many of these can be had free of charge, especially if their use is limited to academic research.

The motivation behind all this is NVIDIA’s recognition that computational biology is one of the lowest hanging fruits for GPU acceleration. Performance increases on the order of 10X to 100X compared to a CPU are fairly typical for these types of codes. This has not gone unnoticed. “The kind of momentum around GPUs in this domain has been perhaps the biggest and most organic that we’ve seen,” says Sumit Gupta, NVIDIA’s senior product manager for the Tesla group. According to him, a lot of biologists have turned to GPUs without any prodding from NVIDIA. The reason for this, he thinks, is that for many small and moderate-sized bio-research projects, the costs and complexity of high performance computing have become a true pain point.

The life sciences sector is already one of the largest markets for high performance computing. In 2008, 29 percent of the supercomputing cycles on TeraGrid were dedicated to bioscience applications, while another 19 percent were running related codes in chemistry and material sciences research. In the commercial realm, HPC demand is being driven by pharmaceutical companies and the emerging genomics industry in their quest for better drugs and treatments. Analyst firm IDC estimates the bioscience vertical is worth well over $1.5 billion to HPC vendors and expanding at a CAGR of 2.6 percent . By the way, that CAGR figure is post-recession; in 2008 IDC was forecasting a growth rate of 9.3 percent. Nevertheless, the prospects for HPC in this sector are significant.

Drug discovery, in particular, is one area where HPC promises to both lower costs and accelerate the pace of research. Today the physical synthesis of drug compounds and the subsequent testing in high-throughput drug screening is both expensive and time consuming, typically representing a five-year R&D cycle. On modern HPC systems, much of this work can be simulated with molecular dynamics and quantum chemistry codes, in essence, replacing expensive labor and material costs with cheap CPU cycles.

Or GPU cycles, as the case may be. NVIDIA’s point with the Tesla Bio Workbench is that GPUs can make computational bioscience a much less expensive proposition than ever before. Because of the data parallel computational capabilities of the modern graphics processor, for many science applications a GPU-equipped workstation can replace a small CPU cluster, while a moderate-sized GPU cluster can stand in for a high-end supercomputer. This lowers up-front hardware costs, energy use over the life of the system, and datacenter space.

For example, a small simulation of the satellite tobacco mosaic virus (STMV) virus using NAMD, a molecular dynamics code for biomolecular simulations, can be performed on a modern 16-CPU cluster based on quad-core x86 technology. But according to NVIDIA’s Gupta, a 4-GPU workstation with a CUDA-version of NAMD will outperform that cluster, and with just a fraction of the power consumption. From the individual researcher’s point of view “anything that keeps the job on the workstation is good,” says Gupta.

Of course, larger simulations require more computational muscle than a workstation can provide. But since these codes tend to scale very nicely, a GPU cluster is the natural path up. “The key to acceptance here is going to be the fact that it’s easy to simulate large molecules,” explains Gupta. “You don’t have to get time on a supercomputer, because that’s too restricting.” For a drug company, that means every researcher can have a GPU workstation for their own small experiments and can share a GPU cluster when they need to run a larger problem.

Commercial products resulting from GPU-powered computational biology have yet to appear. At this point the use of these methods for drug discovery at pharmaceutical companies is sporadic. And given the length of clinical trials that must follow the drug design and discovery process, Gupta thinks we probably won’t begin to hear of success stories for another five years or so. For NVIDIA, the immediate challenge is to convince the biotech industry that these GPU computational tools and platforms are ready now.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This