NVIDIA Takes Aim at GPU Acceleration for Bioscience Applications

By Michael Feldman

January 14, 2010

NVIDIA has announced the Tesla Bio Workbench, a new program designed to bring together the computational components needed to run GPU-accelerated bioscience applications. The rationale is the same one NVIDIA’s been touting ever since it got into the high performance computing business: take advantage of the superior performance of the GPU in order to lower the entry point for HPC. In this case, they’ve assembled a GPU-centric workbench specifically designed for life science researchers and scientists.

In a nutshell, the Tesla Bio Workbench includes of an array of GPU-capable bioscience codes, a community Web site for downloading the codes and providing a forum for exchanging information, and, of course, recommendations for NVIDIA Tesla GPU -equipped workstations and clusters. The strategy is to educate the biotech community that applications and hardware are here and within the reach of more researchers than ever before.

Over the past couple of years, the application set for computational biology codes that are GPU friendly has grown tremendously, thanks mainly to CUDA ports of the CPU versions of the software. This has produced a large number of popular molecular dynamics and quantum chemistry software packages that can now be run on NVIDIA GPUs. These include such codes as AMBER, GROMACS, NAMD, TeraChem, and VMD, among others. A number of bioinformatics codes like CUDA-SW++ (Smith-Waterman), GPU-HMMER, and MUMmerGPU, are also available. All of these can be downloaded via the Tesla Bio Workbench from their respective owner sites. Many of these can be had free of charge, especially if their use is limited to academic research.

The motivation behind all this is NVIDIA’s recognition that computational biology is one of the lowest hanging fruits for GPU acceleration. Performance increases on the order of 10X to 100X compared to a CPU are fairly typical for these types of codes. This has not gone unnoticed. “The kind of momentum around GPUs in this domain has been perhaps the biggest and most organic that we’ve seen,” says Sumit Gupta, NVIDIA’s senior product manager for the Tesla group. According to him, a lot of biologists have turned to GPUs without any prodding from NVIDIA. The reason for this, he thinks, is that for many small and moderate-sized bio-research projects, the costs and complexity of high performance computing have become a true pain point.

The life sciences sector is already one of the largest markets for high performance computing. In 2008, 29 percent of the supercomputing cycles on TeraGrid were dedicated to bioscience applications, while another 19 percent were running related codes in chemistry and material sciences research. In the commercial realm, HPC demand is being driven by pharmaceutical companies and the emerging genomics industry in their quest for better drugs and treatments. Analyst firm IDC estimates the bioscience vertical is worth well over $1.5 billion to HPC vendors and expanding at a CAGR of 2.6 percent . By the way, that CAGR figure is post-recession; in 2008 IDC was forecasting a growth rate of 9.3 percent. Nevertheless, the prospects for HPC in this sector are significant.

Drug discovery, in particular, is one area where HPC promises to both lower costs and accelerate the pace of research. Today the physical synthesis of drug compounds and the subsequent testing in high-throughput drug screening is both expensive and time consuming, typically representing a five-year R&D cycle. On modern HPC systems, much of this work can be simulated with molecular dynamics and quantum chemistry codes, in essence, replacing expensive labor and material costs with cheap CPU cycles.

Or GPU cycles, as the case may be. NVIDIA’s point with the Tesla Bio Workbench is that GPUs can make computational bioscience a much less expensive proposition than ever before. Because of the data parallel computational capabilities of the modern graphics processor, for many science applications a GPU-equipped workstation can replace a small CPU cluster, while a moderate-sized GPU cluster can stand in for a high-end supercomputer. This lowers up-front hardware costs, energy use over the life of the system, and datacenter space.

For example, a small simulation of the satellite tobacco mosaic virus (STMV) virus using NAMD, a molecular dynamics code for biomolecular simulations, can be performed on a modern 16-CPU cluster based on quad-core x86 technology. But according to NVIDIA’s Gupta, a 4-GPU workstation with a CUDA-version of NAMD will outperform that cluster, and with just a fraction of the power consumption. From the individual researcher’s point of view “anything that keeps the job on the workstation is good,” says Gupta.

Of course, larger simulations require more computational muscle than a workstation can provide. But since these codes tend to scale very nicely, a GPU cluster is the natural path up. “The key to acceptance here is going to be the fact that it’s easy to simulate large molecules,” explains Gupta. “You don’t have to get time on a supercomputer, because that’s too restricting.” For a drug company, that means every researcher can have a GPU workstation for their own small experiments and can share a GPU cluster when they need to run a larger problem.

Commercial products resulting from GPU-powered computational biology have yet to appear. At this point the use of these methods for drug discovery at pharmaceutical companies is sporadic. And given the length of clinical trials that must follow the drug design and discovery process, Gupta thinks we probably won’t begin to hear of success stories for another five years or so. For NVIDIA, the immediate challenge is to convince the biotech industry that these GPU computational tools and platforms are ready now.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This