NVIDIA Takes Aim at GPU Acceleration for Bioscience Applications

By Michael Feldman

January 14, 2010

NVIDIA has announced the Tesla Bio Workbench, a new program designed to bring together the computational components needed to run GPU-accelerated bioscience applications. The rationale is the same one NVIDIA’s been touting ever since it got into the high performance computing business: take advantage of the superior performance of the GPU in order to lower the entry point for HPC. In this case, they’ve assembled a GPU-centric workbench specifically designed for life science researchers and scientists.

In a nutshell, the Tesla Bio Workbench includes of an array of GPU-capable bioscience codes, a community Web site for downloading the codes and providing a forum for exchanging information, and, of course, recommendations for NVIDIA Tesla GPU -equipped workstations and clusters. The strategy is to educate the biotech community that applications and hardware are here and within the reach of more researchers than ever before.

Over the past couple of years, the application set for computational biology codes that are GPU friendly has grown tremendously, thanks mainly to CUDA ports of the CPU versions of the software. This has produced a large number of popular molecular dynamics and quantum chemistry software packages that can now be run on NVIDIA GPUs. These include such codes as AMBER, GROMACS, NAMD, TeraChem, and VMD, among others. A number of bioinformatics codes like CUDA-SW++ (Smith-Waterman), GPU-HMMER, and MUMmerGPU, are also available. All of these can be downloaded via the Tesla Bio Workbench from their respective owner sites. Many of these can be had free of charge, especially if their use is limited to academic research.

The motivation behind all this is NVIDIA’s recognition that computational biology is one of the lowest hanging fruits for GPU acceleration. Performance increases on the order of 10X to 100X compared to a CPU are fairly typical for these types of codes. This has not gone unnoticed. “The kind of momentum around GPUs in this domain has been perhaps the biggest and most organic that we’ve seen,” says Sumit Gupta, NVIDIA’s senior product manager for the Tesla group. According to him, a lot of biologists have turned to GPUs without any prodding from NVIDIA. The reason for this, he thinks, is that for many small and moderate-sized bio-research projects, the costs and complexity of high performance computing have become a true pain point.

The life sciences sector is already one of the largest markets for high performance computing. In 2008, 29 percent of the supercomputing cycles on TeraGrid were dedicated to bioscience applications, while another 19 percent were running related codes in chemistry and material sciences research. In the commercial realm, HPC demand is being driven by pharmaceutical companies and the emerging genomics industry in their quest for better drugs and treatments. Analyst firm IDC estimates the bioscience vertical is worth well over $1.5 billion to HPC vendors and expanding at a CAGR of 2.6 percent . By the way, that CAGR figure is post-recession; in 2008 IDC was forecasting a growth rate of 9.3 percent. Nevertheless, the prospects for HPC in this sector are significant.

Drug discovery, in particular, is one area where HPC promises to both lower costs and accelerate the pace of research. Today the physical synthesis of drug compounds and the subsequent testing in high-throughput drug screening is both expensive and time consuming, typically representing a five-year R&D cycle. On modern HPC systems, much of this work can be simulated with molecular dynamics and quantum chemistry codes, in essence, replacing expensive labor and material costs with cheap CPU cycles.

Or GPU cycles, as the case may be. NVIDIA’s point with the Tesla Bio Workbench is that GPUs can make computational bioscience a much less expensive proposition than ever before. Because of the data parallel computational capabilities of the modern graphics processor, for many science applications a GPU-equipped workstation can replace a small CPU cluster, while a moderate-sized GPU cluster can stand in for a high-end supercomputer. This lowers up-front hardware costs, energy use over the life of the system, and datacenter space.

For example, a small simulation of the satellite tobacco mosaic virus (STMV) virus using NAMD, a molecular dynamics code for biomolecular simulations, can be performed on a modern 16-CPU cluster based on quad-core x86 technology. But according to NVIDIA’s Gupta, a 4-GPU workstation with a CUDA-version of NAMD will outperform that cluster, and with just a fraction of the power consumption. From the individual researcher’s point of view “anything that keeps the job on the workstation is good,” says Gupta.

Of course, larger simulations require more computational muscle than a workstation can provide. But since these codes tend to scale very nicely, a GPU cluster is the natural path up. “The key to acceptance here is going to be the fact that it’s easy to simulate large molecules,” explains Gupta. “You don’t have to get time on a supercomputer, because that’s too restricting.” For a drug company, that means every researcher can have a GPU workstation for their own small experiments and can share a GPU cluster when they need to run a larger problem.

Commercial products resulting from GPU-powered computational biology have yet to appear. At this point the use of these methods for drug discovery at pharmaceutical companies is sporadic. And given the length of clinical trials that must follow the drug design and discovery process, Gupta thinks we probably won’t begin to hear of success stories for another five years or so. For NVIDIA, the immediate challenge is to convince the biotech industry that these GPU computational tools and platforms are ready now.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s Hot and What’s Not at ISC 2018?

June 22, 2018

As the calendar rolls around to late June we see the ISC conference, held in Frankfurt (June 24th-28th), heave into view. With some of the pre-show announcements already starting to roll out, what do we think some of the Read more…

By Dairsie Latimer

Servers in Orbit, HPE Apollos Make 4,500 Trips Around Earth

June 22, 2018

The International Space Station shines a little brighter in the night sky thanks to what amounts to an orbiting supercomputer lofted to the outpost last year as part of a year-long experiment to determine if high-end com Read more…

By George Leopold

HPCwire Readers’ and Editors’ Choice Awards Turns 15

June 22, 2018

A hallmark of sustainability is this: If you are not serving a need effectively and efficiently you do not last. The HPCwire Readers’ and Editors’ Choice awards program has stood the test of time. Each year, our read Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Taking the AI Training Wheels Off: From PoC to Production

Even though it seems simple now, there were a lot of skills to master in learning to ride a bike. From balancing on two wheels, and steering in a straight line, to going around corners and stopping before running over the dog, it took lots of practice to master these skills. Read more…

Tribute: Dr. Bob Borchers, 1936-2018

June 21, 2018

Dr. Bob Borchers, a leader in the high performance computing community for decades, passed away peacefully in Maui, Hawaii, on June 7th. His memorial service will be held on June 22nd in Reston, Virginia. Dr. Borchers Read more…

By Ann Redelfs

What’s Hot and What’s Not at ISC 2018?

June 22, 2018

As the calendar rolls around to late June we see the ISC conference, held in Frankfurt (June 24th-28th), heave into view. With some of the pre-show announcement Read more…

By Dairsie Latimer

Servers in Orbit, HPE Apollos Make 4,500 Trips Around Earth

June 22, 2018

The International Space Station shines a little brighter in the night sky thanks to what amounts to an orbiting supercomputer lofted to the outpost last year as Read more…

By George Leopold

HPCwire Readers’ and Editors’ Choice Awards Turns 15

June 22, 2018

A hallmark of sustainability is this: If you are not serving a need effectively and efficiently you do not last. The HPCwire Readers’ and Editors’ Choice aw Read more…

By Tiffany Trader

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between t Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This