MATLAB Adds GPGPU Support

By Michael Feldman

September 20, 2010

MATLAB users with a taste for GPU computing now have a perfect reason to move up to the latest version. Release R2010b adds native GPGPU support that allows user to harness NVIDIA graphics processors for engineering and scientific computing. The new capability is provided within the Parallel Computing Toolbox and Distributed Computing Server.

MathWorks released R2010b in early September, and is taking advantage of this week’s NVIDIA GPU Technology Conference in San Jose, California, to demonstrate the new GPU computing support. Early adopters, though, have already had a chance to check out the software. A beta version of the GPGPU support was unveiled at SC09 last November, attracting hundreds of customers who wanted to give the new capabilities a whirl.

According to Silvina Grad-Freilich, senior manager for Parallel Computing at MathWorks, that was about five or six times more beta registrations than they were anticipating. They also were somewhat surprised to see such a wide range of users sign up. “We were expecting to receive requests from people in very defined areas like finance or academia,” said Grad-Freilich. “Interestingly enough, customers from all of the industries that we sell to registered for the beta.”

The initial support for GPUs is confined to NVIDIA gear, and only for those CUDA-supported devices with a compute capability of 1.3 or higher. In the Tesla product line, that equates to the 10-series and 20-series (Fermi) GPUs. The rationale for limiting support to the late-model CUDA GPUs had to do with lack of double-precision floating point support and IEEE compliance in pre-1.3 CUDA GPUs. The MATLAB team felt both were required to make GPU computing a worthwhile capability for its customer base of scientists, engineers, and quantitative analysts.

Access to the GPU can be accomplished in two ways: via invocation of existing CUDA kernels and through high-level programming support that has been incorporated into MATLAB. Using the first method, users who are ahead of the curve GPGPU-wise will be able to leverage already-developed CUDA software, allowing them to call CUDA kernels inside MATLAB applications. But according to Grad-Freilich, they expect most MATLAB users will want to employ the new high-level support to get access to the graphics processors.

For native MATLAB GPU support, code changes to existing apps should be relatively minor. At minimum, the developer needs to invoke one call (gpuArray) to transfer the data array to the GPU and another call (gather) to transfer it back to the CPU host. The computations in between can use existing MATLAB built-in functions that have been overloaded to work on GPU arrays. GPUs can also be accessed with custom MATLAB functions provided by the user, simply by plugging the GPU array parameters into the function invocation. In the initial release, MathWorks has overloaded over 100 of the most commonly-used mathematical functions for GPU computing. Here is a simple GPU computing code snippet:

>> A = someArray(1000, 1000);
>> G = gpuArray(A); % Transfer data to GPU memory

>> F = fft(G); % computation on the GPU
>> x = Gb; % computation on the GPU

>> z = gather(x); % Bring back into the MATLAB host

The new support also includes the ability to distribute an application across a GPU cluster or a multi-GPU workstation, using MATLAB’s parallel for loop (parfor). In this scenario, computations in the parallelized loop are executed on multiple GPUs in the user’s setup. Because of the abstraction of MATLAB parallelization, the source code is portable across different types of multi-GPU configurations — workstations, clusters and grids.

By offering this simple interface, MATLAB is able to hide all the gritty GPU details of hardware initialization, data transfer and memory management from the user. And since the average MATLAB user is a domain specialist rather than a professional C/C++ programmer, this allows them to remain in their software comfort zone. On the other hand, many MATLAB apps are intended only for prototyping. When they go into production, they may end up as professionally-developed C/C++ programs, the idea being to improve performance.

One of the nice outcomes of GPU acceleration is that some MATLAB codes can be made fast enough for production deployment. The speedups for some algorithms are on par with other GPGPU accelerated apps. In MathWorks’ own tests, they were able to demonstrate a 50-fold computational speedup on a GPU versus the CPU implementation. In this case, the program was a spectrogram application using FFT functions, and executed on a 16-node GPU cluster.

However, when the CPU-to-GPU data transfer time was factored in, the measured speedup was just five-fold. That still represents very respectable acceleration, but it illustrated the performance penalty of the data transfers back and forth across the PCIe link (as well as, in this case, the GigE network of the cluster). Perhaps the more salient metric is the number of FFTs that can be managed by the different processors. The CPUs can only process a handful of FFT functions at a time, while the GPUs can handle millions, giving the GPU implementation much greater scalability

Although GPGPU is a new feature for MATLAB, there is already a lot of capability included for users who happen to have access to the newer NVIDIA hardware. The intention is to grow this functionality across the next several releases. To get a more detailed look and what’s available today, check out the MATLAB GPU Support web page.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Budget Approved for $8.3B in 2020, a 2.5% Increase

January 16, 2020

The National Science Foundation (NSF) has been spared a President Trump-proposed budget cut that would have rolled back its funding to 2012 levels. Congress passed legislation last month that sets the budget at $8.3 bill Read more…

By Staff report

NOAA Updates Its Massive, Supercomputer-Generated Climate Dataset

January 15, 2020

As Australia burns, understanding and mitigating the climate crisis is more urgent than ever. Now, by leveraging the computing resources at the National Energy Research Scientific Computing Center (NERSC), the U.S. National Oceanic and Atmospheric Administration (NOAA) has updated its 20th Century Reanalysis Project (20CR) dataset... Read more…

By Oliver Peckham

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of the countries in Europe, has signed a four-year, $89-million Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, the gold standard programming languages for fast performance Read more…

By John Russell

Quantum Computing, ML Drive 2019 Patent Awards

January 14, 2020

The dizzying pace of technology innovation often fueled by the growing availability of computing horsepower is underscored by the race to develop unique designs and application that can be patented. Among the goals of ma Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Andrew Jones Joins Microsoft Azure HPC Team

January 13, 2020

Andrew Jones announced today he is joining Microsoft as part of the Azure HPC engineering & product team in early February. Jones makes the move after nearly 12 years at the UK HPC consultancy Numerical Algorithms Gr Read more…

By Staff report

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 7, 2020

In November at SC19 in Denver, the HPCwire Readers’ and Editors’ Choice awards program celebrated its 16th year of honoring remarkable achievements in high-performance computing. With categories ranging from Best Use of HPC in Energy to Top HPC-Enabled Scientific Achievement, many of the winners contributed to groundbreaking developments in the sciences. This editorial highlights those awards. Read more…

By Oliver Peckham

Blasts from the (Recent) Past and Hopes for the Future

December 23, 2019

What does 2020 look like to you? What did 2019 look like? Lots happened but the main trends were carryovers from 2018 – AI messaging again blanketed everything; the roll-out of new big machines and exascale announcements continued; processor diversity and system disaggregation kicked up a notch; hyperscalers continued flexing their muscles (think AWS and its Graviton2 processor); and the U.S. and China continued their awkward trade war. Read more…

By John Russell

ARPA-E Applies ML to Power Generation Designs

December 19, 2019

The U.S. Energy Department’s research arm is leveraging machine learning technologies to simplify the design process for energy systems ranging from photovolt Read more…

By George Leopold

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This