MATLAB Adds GPGPU Support

By Michael Feldman

September 20, 2010

MATLAB users with a taste for GPU computing now have a perfect reason to move up to the latest version. Release R2010b adds native GPGPU support that allows user to harness NVIDIA graphics processors for engineering and scientific computing. The new capability is provided within the Parallel Computing Toolbox and Distributed Computing Server.

MathWorks released R2010b in early September, and is taking advantage of this week’s NVIDIA GPU Technology Conference in San Jose, California, to demonstrate the new GPU computing support. Early adopters, though, have already had a chance to check out the software. A beta version of the GPGPU support was unveiled at SC09 last November, attracting hundreds of customers who wanted to give the new capabilities a whirl.

According to Silvina Grad-Freilich, senior manager for Parallel Computing at MathWorks, that was about five or six times more beta registrations than they were anticipating. They also were somewhat surprised to see such a wide range of users sign up. “We were expecting to receive requests from people in very defined areas like finance or academia,” said Grad-Freilich. “Interestingly enough, customers from all of the industries that we sell to registered for the beta.”

The initial support for GPUs is confined to NVIDIA gear, and only for those CUDA-supported devices with a compute capability of 1.3 or higher. In the Tesla product line, that equates to the 10-series and 20-series (Fermi) GPUs. The rationale for limiting support to the late-model CUDA GPUs had to do with lack of double-precision floating point support and IEEE compliance in pre-1.3 CUDA GPUs. The MATLAB team felt both were required to make GPU computing a worthwhile capability for its customer base of scientists, engineers, and quantitative analysts.

Access to the GPU can be accomplished in two ways: via invocation of existing CUDA kernels and through high-level programming support that has been incorporated into MATLAB. Using the first method, users who are ahead of the curve GPGPU-wise will be able to leverage already-developed CUDA software, allowing them to call CUDA kernels inside MATLAB applications. But according to Grad-Freilich, they expect most MATLAB users will want to employ the new high-level support to get access to the graphics processors.

For native MATLAB GPU support, code changes to existing apps should be relatively minor. At minimum, the developer needs to invoke one call (gpuArray) to transfer the data array to the GPU and another call (gather) to transfer it back to the CPU host. The computations in between can use existing MATLAB built-in functions that have been overloaded to work on GPU arrays. GPUs can also be accessed with custom MATLAB functions provided by the user, simply by plugging the GPU array parameters into the function invocation. In the initial release, MathWorks has overloaded over 100 of the most commonly-used mathematical functions for GPU computing. Here is a simple GPU computing code snippet:

>> A = someArray(1000, 1000);
>> G = gpuArray(A); % Transfer data to GPU memory

>> F = fft(G); % computation on the GPU
>> x = Gb; % computation on the GPU

>> z = gather(x); % Bring back into the MATLAB host

The new support also includes the ability to distribute an application across a GPU cluster or a multi-GPU workstation, using MATLAB’s parallel for loop (parfor). In this scenario, computations in the parallelized loop are executed on multiple GPUs in the user’s setup. Because of the abstraction of MATLAB parallelization, the source code is portable across different types of multi-GPU configurations — workstations, clusters and grids.

By offering this simple interface, MATLAB is able to hide all the gritty GPU details of hardware initialization, data transfer and memory management from the user. And since the average MATLAB user is a domain specialist rather than a professional C/C++ programmer, this allows them to remain in their software comfort zone. On the other hand, many MATLAB apps are intended only for prototyping. When they go into production, they may end up as professionally-developed C/C++ programs, the idea being to improve performance.

One of the nice outcomes of GPU acceleration is that some MATLAB codes can be made fast enough for production deployment. The speedups for some algorithms are on par with other GPGPU accelerated apps. In MathWorks’ own tests, they were able to demonstrate a 50-fold computational speedup on a GPU versus the CPU implementation. In this case, the program was a spectrogram application using FFT functions, and executed on a 16-node GPU cluster.

However, when the CPU-to-GPU data transfer time was factored in, the measured speedup was just five-fold. That still represents very respectable acceleration, but it illustrated the performance penalty of the data transfers back and forth across the PCIe link (as well as, in this case, the GigE network of the cluster). Perhaps the more salient metric is the number of FFTs that can be managed by the different processors. The CPUs can only process a handful of FFT functions at a time, while the GPUs can handle millions, giving the GPU implementation much greater scalability

Although GPGPU is a new feature for MATLAB, there is already a lot of capability included for users who happen to have access to the newer NVIDIA hardware. The intention is to grow this functionality across the next several releases. To get a more detailed look and what’s available today, check out the MATLAB GPU Support web page.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about one of the great inspirational stories of these competitions. Read more…

By Dan Olds

NSF Launches Quantum Computing Faculty Fellows Program

October 22, 2018

Efforts to expand quantum computing research capacity continue to accelerate. The National Science Foundation today announced a Quantum Computing & Information Science Faculty Fellows (QCIS-FF) program aimed at devel Read more…

By John Russell

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Join IBM at SC18 and Learn to Harness the Next Generation of AI-focused Supercomputing

Blurring the lines between HPC and AI

Today’s high performance computers are helping clients gain insights at an unprecedented pace. The intersection of artificial intelligence (AI) and HPC can transform industries while solving some of the world’s toughest challenges. Read more…

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about o Read more…

By Dan Olds

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This