MATLAB Adds GPGPU Support

By Michael Feldman

September 20, 2010

MATLAB users with a taste for GPU computing now have a perfect reason to move up to the latest version. Release R2010b adds native GPGPU support that allows user to harness NVIDIA graphics processors for engineering and scientific computing. The new capability is provided within the Parallel Computing Toolbox and Distributed Computing Server.

MathWorks released R2010b in early September, and is taking advantage of this week’s NVIDIA GPU Technology Conference in San Jose, California, to demonstrate the new GPU computing support. Early adopters, though, have already had a chance to check out the software. A beta version of the GPGPU support was unveiled at SC09 last November, attracting hundreds of customers who wanted to give the new capabilities a whirl.

According to Silvina Grad-Freilich, senior manager for Parallel Computing at MathWorks, that was about five or six times more beta registrations than they were anticipating. They also were somewhat surprised to see such a wide range of users sign up. “We were expecting to receive requests from people in very defined areas like finance or academia,” said Grad-Freilich. “Interestingly enough, customers from all of the industries that we sell to registered for the beta.”

The initial support for GPUs is confined to NVIDIA gear, and only for those CUDA-supported devices with a compute capability of 1.3 or higher. In the Tesla product line, that equates to the 10-series and 20-series (Fermi) GPUs. The rationale for limiting support to the late-model CUDA GPUs had to do with lack of double-precision floating point support and IEEE compliance in pre-1.3 CUDA GPUs. The MATLAB team felt both were required to make GPU computing a worthwhile capability for its customer base of scientists, engineers, and quantitative analysts.

Access to the GPU can be accomplished in two ways: via invocation of existing CUDA kernels and through high-level programming support that has been incorporated into MATLAB. Using the first method, users who are ahead of the curve GPGPU-wise will be able to leverage already-developed CUDA software, allowing them to call CUDA kernels inside MATLAB applications. But according to Grad-Freilich, they expect most MATLAB users will want to employ the new high-level support to get access to the graphics processors.

For native MATLAB GPU support, code changes to existing apps should be relatively minor. At minimum, the developer needs to invoke one call (gpuArray) to transfer the data array to the GPU and another call (gather) to transfer it back to the CPU host. The computations in between can use existing MATLAB built-in functions that have been overloaded to work on GPU arrays. GPUs can also be accessed with custom MATLAB functions provided by the user, simply by plugging the GPU array parameters into the function invocation. In the initial release, MathWorks has overloaded over 100 of the most commonly-used mathematical functions for GPU computing. Here is a simple GPU computing code snippet:

>> A = someArray(1000, 1000);
>> G = gpuArray(A); % Transfer data to GPU memory

>> F = fft(G); % computation on the GPU
>> x = Gb; % computation on the GPU

>> z = gather(x); % Bring back into the MATLAB host

The new support also includes the ability to distribute an application across a GPU cluster or a multi-GPU workstation, using MATLAB’s parallel for loop (parfor). In this scenario, computations in the parallelized loop are executed on multiple GPUs in the user’s setup. Because of the abstraction of MATLAB parallelization, the source code is portable across different types of multi-GPU configurations — workstations, clusters and grids.

By offering this simple interface, MATLAB is able to hide all the gritty GPU details of hardware initialization, data transfer and memory management from the user. And since the average MATLAB user is a domain specialist rather than a professional C/C++ programmer, this allows them to remain in their software comfort zone. On the other hand, many MATLAB apps are intended only for prototyping. When they go into production, they may end up as professionally-developed C/C++ programs, the idea being to improve performance.

One of the nice outcomes of GPU acceleration is that some MATLAB codes can be made fast enough for production deployment. The speedups for some algorithms are on par with other GPGPU accelerated apps. In MathWorks’ own tests, they were able to demonstrate a 50-fold computational speedup on a GPU versus the CPU implementation. In this case, the program was a spectrogram application using FFT functions, and executed on a 16-node GPU cluster.

However, when the CPU-to-GPU data transfer time was factored in, the measured speedup was just five-fold. That still represents very respectable acceleration, but it illustrated the performance penalty of the data transfers back and forth across the PCIe link (as well as, in this case, the GigE network of the cluster). Perhaps the more salient metric is the number of FFTs that can be managed by the different processors. The CPUs can only process a handful of FFT functions at a time, while the GPUs can handle millions, giving the GPU implementation much greater scalability

Although GPGPU is a new feature for MATLAB, there is already a lot of capability included for users who happen to have access to the newer NVIDIA hardware. The intention is to grow this functionality across the next several releases. To get a more detailed look and what’s available today, check out the MATLAB GPU Support web page.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This