IBM Revs Power7 Server Lineup

By Michael Feldman

April 12, 2011

Watson’s decisive win over two of Jeopardy’s top champions on national television earlier this year could turn out to be the most effective infomercial in the history of IT. Capitalizing on that accomplishment, IBM is working hard to highlight the supercomputing technology at every opportunity, including this week’s rollout of new and improved Power7-based servers.

The Power7, of course, was the server chip behind Watson’s game-winning performance in February, and will be the CPU that powers NCSA’s 10-petaflop Blue Waters supercomputer later this year. Although IBM employs Intel Xeon and AMD Opteron processors for its X series servers, the company seems to reserve its greatest enthusiasm for its home-grown Power7 and its associated Power-based rackmount boxes and blades. The latest offerings announced this week include an expanded Power7 blade lineup and speedier CPUs for its Power 750 and 755 servers.

Both the 750 and the 755 are four-socket Power7 servers that were introduced last year. The 750 is built for database serving and general enterprise consolidation/virtualization, while the InfiniBand-equipped 755 is aimed specifically at HPC users. The additional options on the 750 include new four-core and six-core Power7 CPUs running at 3.7 GHz, and two new eight-core Power7s running at 3.2 GHz and 3.6 GHz, respectively. The Power 755, which used to come only with 3.3 GHz chips, is now being outfitted with 3.6 GHz Power7s.

Why they didn’t offer an option for the faster 3.7 GHz Power7s on the Power 755 is a little mysterious. It seems like there would be some interest by HPC users that needed faster threads and a higher memory-to-compute ratio on certain applications.

In the case of the new Power7 blades — the PS703 and PS704 — IBM has actually opted for slower processors. The PS703 is a two-socket (16-core) single-wide blade that substitutes 2.4 GHz Power7 CPUs for the corresponding 3.0 GHz parts in the existing two-socket 16-core PS702. The difference is that the PS702 is a double-wide blade, so presumably the single-wide PS703 could only accommodate the slower, cooler chips in its denser form factor. The PS704 essentially doubles up on the PS703 offering four eight-core Power7 processors, again at 2.4 GHz, in a double-wide blade.

Apparently, the rationale is to offer denser and more scaled-out blades, even at the expense of single-thread performance. According to IBM, the PS704 delivers 60 percent more performance with twice the number of cores, but uses the same amount of space and energy as the older PS702. Cost of the new blades was not specified, but since the Power7 chips are not cheap (even lesser-clocked parts), customers will undoubtedly pay for the privilege of doubling up on their core count.

According to the IBM press release, the University of Massachusetts-Dartmouth is using two Power7 blades (type unspecified) to study the effect of gravitational waves on black holes. According to Gaurav Khanna, professor of physics at UMass-Dartmouth, calculations based on Einstein’s theory of relativity that used to take a month on an 2.5 GHz Xeon-based system can now be executed in less than a week. On this particular application, the Dartmouth team realized an eight-fold performance boost with the Power7 hardware.

It’s not all about Power7 though. In the same announcement this week, IBM also unveiled upgrades to its x86 server lineup, including a new InfiniBand solution for its Intelligent Cluster system (with a built-in Ethernet gateway for high frequency trading work), a 10GbE solution for HPC using BLADE Network Technologies’ RackSwitch, and new platforms refreshed with the latest Intel Xeon E7 (Westmere EX) processors.

IBM’s embrace of Xeons, and E7 in particular, is worth noting. Intel is increasingly positioning its multi-socket Xeons as cost-effective alternatives for the traditionally RISC-based “mission-critical” application space. That pits the Xeon E7 CPUs against Oracle’s Sparc processor and IBM’s Power7, as well as, ironically, Intel’s own Itanium chip.

Intel claimed that an E7 4800-based server matched integer throughput performance of a Power 750 server at about one fifth the cost. Given the Westmere architecture can execute only four floating point (FP) operations per clock cycle to the Power7’s eight, Intel was careful not to claim that its latest Xeons were better than Power7 at FP throughput. On top of that, the IBM chip delivers about four times the memory bandwidth as the latest offerings from Intel. For raw computational horsepower, the Power CPUs still outrun the Xeons.

Where Intel has managed to establish some headway is memory capacity. The E7-4800 CPUs will support up to 2 TB of DRAM in a four-socket setup, while the Power 750 and 755 top out at 512 GB and 256 GB, respectively. That’s a significant edge, especially for analytics workloads that rely on terabyte-sized in-memory datasets.

Ironically, IBM’s super-sized memory solution for big data analytics is provided by its Xeon-based eX5 servers (x3850 X5 and x3950 X5), which were introduced in March 2010. The technology uses a special memory expansion unit, known as the MAX5, which connects the extra RAM to the Xeon servers via QPI cables. The MAX5 adds an extra 32 DIMMs to the 64 DIMMs in the four-socket server, which means a system topped out with 16 GB DIMMs could access 1.5 TB of global memory. Since these boxes now support the new E7 Xeons, and with them, 32 GB DIMMs, maximum memory has doubled to 3 TB per server — the same as in IBM’s Z series mainframe.

For the time being, IBM seems content to let its x86 servers carry the big memory banner. At some point, the company may ramp up capacities on the Power servers, as long as it can justify the application demand from its customers. In the meantime, neither Intel nor IBM is likely to get too vocal about the other architecture’s shortcomings.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This