IBM Revs Power7 Server Lineup

By Michael Feldman

April 12, 2011

Watson’s decisive win over two of Jeopardy’s top champions on national television earlier this year could turn out to be the most effective infomercial in the history of IT. Capitalizing on that accomplishment, IBM is working hard to highlight the supercomputing technology at every opportunity, including this week’s rollout of new and improved Power7-based servers.

The Power7, of course, was the server chip behind Watson’s game-winning performance in February, and will be the CPU that powers NCSA’s 10-petaflop Blue Waters supercomputer later this year. Although IBM employs Intel Xeon and AMD Opteron processors for its X series servers, the company seems to reserve its greatest enthusiasm for its home-grown Power7 and its associated Power-based rackmount boxes and blades. The latest offerings announced this week include an expanded Power7 blade lineup and speedier CPUs for its Power 750 and 755 servers.

Both the 750 and the 755 are four-socket Power7 servers that were introduced last year. The 750 is built for database serving and general enterprise consolidation/virtualization, while the InfiniBand-equipped 755 is aimed specifically at HPC users. The additional options on the 750 include new four-core and six-core Power7 CPUs running at 3.7 GHz, and two new eight-core Power7s running at 3.2 GHz and 3.6 GHz, respectively. The Power 755, which used to come only with 3.3 GHz chips, is now being outfitted with 3.6 GHz Power7s.

Why they didn’t offer an option for the faster 3.7 GHz Power7s on the Power 755 is a little mysterious. It seems like there would be some interest by HPC users that needed faster threads and a higher memory-to-compute ratio on certain applications.

In the case of the new Power7 blades — the PS703 and PS704 — IBM has actually opted for slower processors. The PS703 is a two-socket (16-core) single-wide blade that substitutes 2.4 GHz Power7 CPUs for the corresponding 3.0 GHz parts in the existing two-socket 16-core PS702. The difference is that the PS702 is a double-wide blade, so presumably the single-wide PS703 could only accommodate the slower, cooler chips in its denser form factor. The PS704 essentially doubles up on the PS703 offering four eight-core Power7 processors, again at 2.4 GHz, in a double-wide blade.

Apparently, the rationale is to offer denser and more scaled-out blades, even at the expense of single-thread performance. According to IBM, the PS704 delivers 60 percent more performance with twice the number of cores, but uses the same amount of space and energy as the older PS702. Cost of the new blades was not specified, but since the Power7 chips are not cheap (even lesser-clocked parts), customers will undoubtedly pay for the privilege of doubling up on their core count.

According to the IBM press release, the University of Massachusetts-Dartmouth is using two Power7 blades (type unspecified) to study the effect of gravitational waves on black holes. According to Gaurav Khanna, professor of physics at UMass-Dartmouth, calculations based on Einstein’s theory of relativity that used to take a month on an 2.5 GHz Xeon-based system can now be executed in less than a week. On this particular application, the Dartmouth team realized an eight-fold performance boost with the Power7 hardware.

It’s not all about Power7 though. In the same announcement this week, IBM also unveiled upgrades to its x86 server lineup, including a new InfiniBand solution for its Intelligent Cluster system (with a built-in Ethernet gateway for high frequency trading work), a 10GbE solution for HPC using BLADE Network Technologies’ RackSwitch, and new platforms refreshed with the latest Intel Xeon E7 (Westmere EX) processors.

IBM’s embrace of Xeons, and E7 in particular, is worth noting. Intel is increasingly positioning its multi-socket Xeons as cost-effective alternatives for the traditionally RISC-based “mission-critical” application space. That pits the Xeon E7 CPUs against Oracle’s Sparc processor and IBM’s Power7, as well as, ironically, Intel’s own Itanium chip.

Intel claimed that an E7 4800-based server matched integer throughput performance of a Power 750 server at about one fifth the cost. Given the Westmere architecture can execute only four floating point (FP) operations per clock cycle to the Power7’s eight, Intel was careful not to claim that its latest Xeons were better than Power7 at FP throughput. On top of that, the IBM chip delivers about four times the memory bandwidth as the latest offerings from Intel. For raw computational horsepower, the Power CPUs still outrun the Xeons.

Where Intel has managed to establish some headway is memory capacity. The E7-4800 CPUs will support up to 2 TB of DRAM in a four-socket setup, while the Power 750 and 755 top out at 512 GB and 256 GB, respectively. That’s a significant edge, especially for analytics workloads that rely on terabyte-sized in-memory datasets.

Ironically, IBM’s super-sized memory solution for big data analytics is provided by its Xeon-based eX5 servers (x3850 X5 and x3950 X5), which were introduced in March 2010. The technology uses a special memory expansion unit, known as the MAX5, which connects the extra RAM to the Xeon servers via QPI cables. The MAX5 adds an extra 32 DIMMs to the 64 DIMMs in the four-socket server, which means a system topped out with 16 GB DIMMs could access 1.5 TB of global memory. Since these boxes now support the new E7 Xeons, and with them, 32 GB DIMMs, maximum memory has doubled to 3 TB per server — the same as in IBM’s Z series mainframe.

For the time being, IBM seems content to let its x86 servers carry the big memory banner. At some point, the company may ramp up capacities on the Power servers, as long as it can justify the application demand from its customers. In the meantime, neither Intel nor IBM is likely to get too vocal about the other architecture’s shortcomings.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This