IBM Revs Power7 Server Lineup

By Michael Feldman

April 12, 2011

Watson’s decisive win over two of Jeopardy’s top champions on national television earlier this year could turn out to be the most effective infomercial in the history of IT. Capitalizing on that accomplishment, IBM is working hard to highlight the supercomputing technology at every opportunity, including this week’s rollout of new and improved Power7-based servers.

The Power7, of course, was the server chip behind Watson’s game-winning performance in February, and will be the CPU that powers NCSA’s 10-petaflop Blue Waters supercomputer later this year. Although IBM employs Intel Xeon and AMD Opteron processors for its X series servers, the company seems to reserve its greatest enthusiasm for its home-grown Power7 and its associated Power-based rackmount boxes and blades. The latest offerings announced this week include an expanded Power7 blade lineup and speedier CPUs for its Power 750 and 755 servers.

Both the 750 and the 755 are four-socket Power7 servers that were introduced last year. The 750 is built for database serving and general enterprise consolidation/virtualization, while the InfiniBand-equipped 755 is aimed specifically at HPC users. The additional options on the 750 include new four-core and six-core Power7 CPUs running at 3.7 GHz, and two new eight-core Power7s running at 3.2 GHz and 3.6 GHz, respectively. The Power 755, which used to come only with 3.3 GHz chips, is now being outfitted with 3.6 GHz Power7s.

Why they didn’t offer an option for the faster 3.7 GHz Power7s on the Power 755 is a little mysterious. It seems like there would be some interest by HPC users that needed faster threads and a higher memory-to-compute ratio on certain applications.

In the case of the new Power7 blades — the PS703 and PS704 — IBM has actually opted for slower processors. The PS703 is a two-socket (16-core) single-wide blade that substitutes 2.4 GHz Power7 CPUs for the corresponding 3.0 GHz parts in the existing two-socket 16-core PS702. The difference is that the PS702 is a double-wide blade, so presumably the single-wide PS703 could only accommodate the slower, cooler chips in its denser form factor. The PS704 essentially doubles up on the PS703 offering four eight-core Power7 processors, again at 2.4 GHz, in a double-wide blade.

Apparently, the rationale is to offer denser and more scaled-out blades, even at the expense of single-thread performance. According to IBM, the PS704 delivers 60 percent more performance with twice the number of cores, but uses the same amount of space and energy as the older PS702. Cost of the new blades was not specified, but since the Power7 chips are not cheap (even lesser-clocked parts), customers will undoubtedly pay for the privilege of doubling up on their core count.

According to the IBM press release, the University of Massachusetts-Dartmouth is using two Power7 blades (type unspecified) to study the effect of gravitational waves on black holes. According to Gaurav Khanna, professor of physics at UMass-Dartmouth, calculations based on Einstein’s theory of relativity that used to take a month on an 2.5 GHz Xeon-based system can now be executed in less than a week. On this particular application, the Dartmouth team realized an eight-fold performance boost with the Power7 hardware.

It’s not all about Power7 though. In the same announcement this week, IBM also unveiled upgrades to its x86 server lineup, including a new InfiniBand solution for its Intelligent Cluster system (with a built-in Ethernet gateway for high frequency trading work), a 10GbE solution for HPC using BLADE Network Technologies’ RackSwitch, and new platforms refreshed with the latest Intel Xeon E7 (Westmere EX) processors.

IBM’s embrace of Xeons, and E7 in particular, is worth noting. Intel is increasingly positioning its multi-socket Xeons as cost-effective alternatives for the traditionally RISC-based “mission-critical” application space. That pits the Xeon E7 CPUs against Oracle’s Sparc processor and IBM’s Power7, as well as, ironically, Intel’s own Itanium chip.

Intel claimed that an E7 4800-based server matched integer throughput performance of a Power 750 server at about one fifth the cost. Given the Westmere architecture can execute only four floating point (FP) operations per clock cycle to the Power7’s eight, Intel was careful not to claim that its latest Xeons were better than Power7 at FP throughput. On top of that, the IBM chip delivers about four times the memory bandwidth as the latest offerings from Intel. For raw computational horsepower, the Power CPUs still outrun the Xeons.

Where Intel has managed to establish some headway is memory capacity. The E7-4800 CPUs will support up to 2 TB of DRAM in a four-socket setup, while the Power 750 and 755 top out at 512 GB and 256 GB, respectively. That’s a significant edge, especially for analytics workloads that rely on terabyte-sized in-memory datasets.

Ironically, IBM’s super-sized memory solution for big data analytics is provided by its Xeon-based eX5 servers (x3850 X5 and x3950 X5), which were introduced in March 2010. The technology uses a special memory expansion unit, known as the MAX5, which connects the extra RAM to the Xeon servers via QPI cables. The MAX5 adds an extra 32 DIMMs to the 64 DIMMs in the four-socket server, which means a system topped out with 16 GB DIMMs could access 1.5 TB of global memory. Since these boxes now support the new E7 Xeons, and with them, 32 GB DIMMs, maximum memory has doubled to 3 TB per server — the same as in IBM’s Z series mainframe.

For the time being, IBM seems content to let its x86 servers carry the big memory banner. At some point, the company may ramp up capacities on the Power servers, as long as it can justify the application demand from its customers. In the meantime, neither Intel nor IBM is likely to get too vocal about the other architecture’s shortcomings.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This