IBM Revs Power7 Server Lineup

By Michael Feldman

April 12, 2011

Watson’s decisive win over two of Jeopardy’s top champions on national television earlier this year could turn out to be the most effective infomercial in the history of IT. Capitalizing on that accomplishment, IBM is working hard to highlight the supercomputing technology at every opportunity, including this week’s rollout of new and improved Power7-based servers.

The Power7, of course, was the server chip behind Watson’s game-winning performance in February, and will be the CPU that powers NCSA’s 10-petaflop Blue Waters supercomputer later this year. Although IBM employs Intel Xeon and AMD Opteron processors for its X series servers, the company seems to reserve its greatest enthusiasm for its home-grown Power7 and its associated Power-based rackmount boxes and blades. The latest offerings announced this week include an expanded Power7 blade lineup and speedier CPUs for its Power 750 and 755 servers.

Both the 750 and the 755 are four-socket Power7 servers that were introduced last year. The 750 is built for database serving and general enterprise consolidation/virtualization, while the InfiniBand-equipped 755 is aimed specifically at HPC users. The additional options on the 750 include new four-core and six-core Power7 CPUs running at 3.7 GHz, and two new eight-core Power7s running at 3.2 GHz and 3.6 GHz, respectively. The Power 755, which used to come only with 3.3 GHz chips, is now being outfitted with 3.6 GHz Power7s.

Why they didn’t offer an option for the faster 3.7 GHz Power7s on the Power 755 is a little mysterious. It seems like there would be some interest by HPC users that needed faster threads and a higher memory-to-compute ratio on certain applications.

In the case of the new Power7 blades — the PS703 and PS704 — IBM has actually opted for slower processors. The PS703 is a two-socket (16-core) single-wide blade that substitutes 2.4 GHz Power7 CPUs for the corresponding 3.0 GHz parts in the existing two-socket 16-core PS702. The difference is that the PS702 is a double-wide blade, so presumably the single-wide PS703 could only accommodate the slower, cooler chips in its denser form factor. The PS704 essentially doubles up on the PS703 offering four eight-core Power7 processors, again at 2.4 GHz, in a double-wide blade.

Apparently, the rationale is to offer denser and more scaled-out blades, even at the expense of single-thread performance. According to IBM, the PS704 delivers 60 percent more performance with twice the number of cores, but uses the same amount of space and energy as the older PS702. Cost of the new blades was not specified, but since the Power7 chips are not cheap (even lesser-clocked parts), customers will undoubtedly pay for the privilege of doubling up on their core count.

According to the IBM press release, the University of Massachusetts-Dartmouth is using two Power7 blades (type unspecified) to study the effect of gravitational waves on black holes. According to Gaurav Khanna, professor of physics at UMass-Dartmouth, calculations based on Einstein’s theory of relativity that used to take a month on an 2.5 GHz Xeon-based system can now be executed in less than a week. On this particular application, the Dartmouth team realized an eight-fold performance boost with the Power7 hardware.

It’s not all about Power7 though. In the same announcement this week, IBM also unveiled upgrades to its x86 server lineup, including a new InfiniBand solution for its Intelligent Cluster system (with a built-in Ethernet gateway for high frequency trading work), a 10GbE solution for HPC using BLADE Network Technologies’ RackSwitch, and new platforms refreshed with the latest Intel Xeon E7 (Westmere EX) processors.

IBM’s embrace of Xeons, and E7 in particular, is worth noting. Intel is increasingly positioning its multi-socket Xeons as cost-effective alternatives for the traditionally RISC-based “mission-critical” application space. That pits the Xeon E7 CPUs against Oracle’s Sparc processor and IBM’s Power7, as well as, ironically, Intel’s own Itanium chip.

Intel claimed that an E7 4800-based server matched integer throughput performance of a Power 750 server at about one fifth the cost. Given the Westmere architecture can execute only four floating point (FP) operations per clock cycle to the Power7’s eight, Intel was careful not to claim that its latest Xeons were better than Power7 at FP throughput. On top of that, the IBM chip delivers about four times the memory bandwidth as the latest offerings from Intel. For raw computational horsepower, the Power CPUs still outrun the Xeons.

Where Intel has managed to establish some headway is memory capacity. The E7-4800 CPUs will support up to 2 TB of DRAM in a four-socket setup, while the Power 750 and 755 top out at 512 GB and 256 GB, respectively. That’s a significant edge, especially for analytics workloads that rely on terabyte-sized in-memory datasets.

Ironically, IBM’s super-sized memory solution for big data analytics is provided by its Xeon-based eX5 servers (x3850 X5 and x3950 X5), which were introduced in March 2010. The technology uses a special memory expansion unit, known as the MAX5, which connects the extra RAM to the Xeon servers via QPI cables. The MAX5 adds an extra 32 DIMMs to the 64 DIMMs in the four-socket server, which means a system topped out with 16 GB DIMMs could access 1.5 TB of global memory. Since these boxes now support the new E7 Xeons, and with them, 32 GB DIMMs, maximum memory has doubled to 3 TB per server — the same as in IBM’s Z series mainframe.

For the time being, IBM seems content to let its x86 servers carry the big memory banner. At some point, the company may ramp up capacities on the Power servers, as long as it can justify the application demand from its customers. In the meantime, neither Intel nor IBM is likely to get too vocal about the other architecture’s shortcomings.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This