Exascale: Power Is Not the Problem!

By Andrew Jones

August 29, 2011

To build exascale systems, power is probably the biggest technical hurdle on the hardware side. In terms of getting to exascale computing, demonstrating the value of supercomputing to funders and the public is a more urgent challenge. But the top roadblock for realizing the potential benefits from exascale is software.

That title is probably controversial to most readers. It is likely that if you asked members of the supercomputing community what is the single biggest challenge for exascale computing, the most common answer would be “power.” It is widely reported, widely talked about, and in many places, generally accepted that finding a few orders of magnitude improvement in power consumption is the biggest roadblock on the way to viable exascale computing. Otherwise, the first exascale computers will require 60MW, 120MW or 200MW — pick your favorite horror figure. I’m not so convinced.

I’m not saying the power estimates for exascale computing are not a problem — they are — but they are not the problem. Because, in the end, it is just a money problem. For most in the community, the objection is not so much to the fact of 60-plus MW supercomputers. Instead, the objection is the resulting operating costs of 60-plus MW supercomputers. We simply don’t want to pay $60 million each year for electricity (or more precisely we don’t want to have to justify to someone else — e.g., funding agencies — that we need to pay that much). But why are we so concerned about large power costs?

Are we really saying, with our concerns over power, that we simply don’t have a good enough case for supercomputing — the science case, business case, track record of innovation delivery, and so on? Surely if supercomputing is that essential, as we keep arguing, then the cost of the power is worth it.

There are several large scientific facilities that have comparable power requirements, often with much narrower missions — remember that supercomputing can advance almost all scientific disciplines — for example, LHC, ITER, NIF, and SNS. And indeed, most of the science communities behind those facilities are also large users of supercomputing.

I occasionally say, glibly and deliberately provocatively, if the scientific community can justify billions of dollars, 100MW of power, and thousands of staff in order to fire tiny particles that most people have never heard of around a big ring of magnets for a fairly narrow science purpose that most people will never understand, then how come we can’t make a case for a facility needing only half of those resources that can do wonders for a whole range of science problems and industrial applications?

[There is a partial answer to that, which I have addressed on my HPC Notes blog to avoid distraction here.]

But secondly, and more importantly, the power problem can be solved with enough money if we can make the case. Accepting huge increases in budgets would also go a long way toward solving several of the other challenges of exascale computing. For example, resiliency could be substantially helped if we could afford comprehensive redundancy and other advanced RAS features; data movement challenges could be helped if we could afford huge increases in memory bandwidth at all levels of the system; and so on.

Those technical challenges would not be totally solved but they would be substantially reduced by money. I don’t mean to trivialize those technical challenges, but certainly they could be made much less scary if we weren’t worried about the cost of solutions.

So, the biggest challenge for exascale computing might not be power (or your other favorite architectural roadblock) but rather our ability to justify enough budget to pay for the power, or more expensive hardware, etc. However, beyond even that, there is a class of challenges for which money alone is not enough.

Assume a huge budget meant an exascale computer with good enough resiliency, plenty of memory bandwidth and every other needed architectural attribute was delivered tomorrow, and never mind the power bills. Could we use it? No. Because of a series of challenges that need not only money, but also lots of time to solve, and in most cases need research because we just don’t know the solutions.

I am thinking of the software related challenges.

Even if we have highly favorable architectures (expensive systems with lots of bandwidth, good resiliency, etc.) I think the community and most, if not all, of the applications are still years away from having algorithms and software implementations that can exploit that scale of computing efficiently.

There is a reasonable effort underway to identify the software problems that we might face in using exascale computing (e.g., IESP and EESI). However, in most cases we can only identify the problems; we still don’t have much idea about the solutions. Even where we have a good idea of the way forward, sensible estimates of the effort required to implement software capable of using exascale computing — OS, tools, applications, post-processing, etc. — is measured in years with large teams.

It certainly requires money, but it needs other scarce resources too, specifically time and skills. That involves a large pool of skilled parallel software engineers, scientists with computational expertise, numerical algorithms research and so on. Scarce resources like these are possibly even harder to create than money!

Power is a problem for exascale computing, and with current budget expectations is probably the biggest technical challenge for the hardware. In terms of getting to exascale computing, demonstrating the value of increased investment in supercomputing to funders and the public/media is probably a more urgent challenge. But the top roadblock for achieving the hugely beneficial potential output from exascale computing is software. There are many challenges to do with the software ecosystem that will take years, lots of skilled workers, and sustained/predictable investment to solve.

That “sustained/predictable” is important. Ad-hoc research grants are not an efficient way to plan and conduct a many-year, many-person, community-wide software research and development agenda. Remember that agenda will consume a non-trivial portion of the careers of many of the individuals involved. And when the researchers start out on this necessary software journey, they need confidence that funding will be there all the way to production deployment and ongoing maintenance many years into the future.

About the Author

Andrew is Vice-President of HPC Services and Consulting at the Numerical Algorithms Group (NAG). He was originally a researcher using HPC and developing related software, later becoming involved in leadership of HPC services. He is also interested in exascale, manycore, skills development, broadening usage, and other future concerns of the HPC community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This