Exascale: Power Is Not the Problem!

By Andrew Jones

August 29, 2011

To build exascale systems, power is probably the biggest technical hurdle on the hardware side. In terms of getting to exascale computing, demonstrating the value of supercomputing to funders and the public is a more urgent challenge. But the top roadblock for realizing the potential benefits from exascale is software.

That title is probably controversial to most readers. It is likely that if you asked members of the supercomputing community what is the single biggest challenge for exascale computing, the most common answer would be “power.” It is widely reported, widely talked about, and in many places, generally accepted that finding a few orders of magnitude improvement in power consumption is the biggest roadblock on the way to viable exascale computing. Otherwise, the first exascale computers will require 60MW, 120MW or 200MW — pick your favorite horror figure. I’m not so convinced.

I’m not saying the power estimates for exascale computing are not a problem — they are — but they are not the problem. Because, in the end, it is just a money problem. For most in the community, the objection is not so much to the fact of 60-plus MW supercomputers. Instead, the objection is the resulting operating costs of 60-plus MW supercomputers. We simply don’t want to pay $60 million each year for electricity (or more precisely we don’t want to have to justify to someone else — e.g., funding agencies — that we need to pay that much). But why are we so concerned about large power costs?

Are we really saying, with our concerns over power, that we simply don’t have a good enough case for supercomputing — the science case, business case, track record of innovation delivery, and so on? Surely if supercomputing is that essential, as we keep arguing, then the cost of the power is worth it.

There are several large scientific facilities that have comparable power requirements, often with much narrower missions — remember that supercomputing can advance almost all scientific disciplines — for example, LHC, ITER, NIF, and SNS. And indeed, most of the science communities behind those facilities are also large users of supercomputing.

I occasionally say, glibly and deliberately provocatively, if the scientific community can justify billions of dollars, 100MW of power, and thousands of staff in order to fire tiny particles that most people have never heard of around a big ring of magnets for a fairly narrow science purpose that most people will never understand, then how come we can’t make a case for a facility needing only half of those resources that can do wonders for a whole range of science problems and industrial applications?

[There is a partial answer to that, which I have addressed on my HPC Notes blog to avoid distraction here.]

But secondly, and more importantly, the power problem can be solved with enough money if we can make the case. Accepting huge increases in budgets would also go a long way toward solving several of the other challenges of exascale computing. For example, resiliency could be substantially helped if we could afford comprehensive redundancy and other advanced RAS features; data movement challenges could be helped if we could afford huge increases in memory bandwidth at all levels of the system; and so on.

Those technical challenges would not be totally solved but they would be substantially reduced by money. I don’t mean to trivialize those technical challenges, but certainly they could be made much less scary if we weren’t worried about the cost of solutions.

So, the biggest challenge for exascale computing might not be power (or your other favorite architectural roadblock) but rather our ability to justify enough budget to pay for the power, or more expensive hardware, etc. However, beyond even that, there is a class of challenges for which money alone is not enough.

Assume a huge budget meant an exascale computer with good enough resiliency, plenty of memory bandwidth and every other needed architectural attribute was delivered tomorrow, and never mind the power bills. Could we use it? No. Because of a series of challenges that need not only money, but also lots of time to solve, and in most cases need research because we just don’t know the solutions.

I am thinking of the software related challenges.

Even if we have highly favorable architectures (expensive systems with lots of bandwidth, good resiliency, etc.) I think the community and most, if not all, of the applications are still years away from having algorithms and software implementations that can exploit that scale of computing efficiently.

There is a reasonable effort underway to identify the software problems that we might face in using exascale computing (e.g., IESP and EESI). However, in most cases we can only identify the problems; we still don’t have much idea about the solutions. Even where we have a good idea of the way forward, sensible estimates of the effort required to implement software capable of using exascale computing — OS, tools, applications, post-processing, etc. — is measured in years with large teams.

It certainly requires money, but it needs other scarce resources too, specifically time and skills. That involves a large pool of skilled parallel software engineers, scientists with computational expertise, numerical algorithms research and so on. Scarce resources like these are possibly even harder to create than money!

Power is a problem for exascale computing, and with current budget expectations is probably the biggest technical challenge for the hardware. In terms of getting to exascale computing, demonstrating the value of increased investment in supercomputing to funders and the public/media is probably a more urgent challenge. But the top roadblock for achieving the hugely beneficial potential output from exascale computing is software. There are many challenges to do with the software ecosystem that will take years, lots of skilled workers, and sustained/predictable investment to solve.

That “sustained/predictable” is important. Ad-hoc research grants are not an efficient way to plan and conduct a many-year, many-person, community-wide software research and development agenda. Remember that agenda will consume a non-trivial portion of the careers of many of the individuals involved. And when the researchers start out on this necessary software journey, they need confidence that funding will be there all the way to production deployment and ongoing maintenance many years into the future.

About the Author

Andrew is Vice-President of HPC Services and Consulting at the Numerical Algorithms Group (NAG). He was originally a researcher using HPC and developing related software, later becoming involved in leadership of HPC services. He is also interested in exascale, manycore, skills development, broadening usage, and other future concerns of the HPC community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This