Exascale: Power Is Not the Problem!

By Andrew Jones

August 29, 2011

To build exascale systems, power is probably the biggest technical hurdle on the hardware side. In terms of getting to exascale computing, demonstrating the value of supercomputing to funders and the public is a more urgent challenge. But the top roadblock for realizing the potential benefits from exascale is software.

That title is probably controversial to most readers. It is likely that if you asked members of the supercomputing community what is the single biggest challenge for exascale computing, the most common answer would be “power.” It is widely reported, widely talked about, and in many places, generally accepted that finding a few orders of magnitude improvement in power consumption is the biggest roadblock on the way to viable exascale computing. Otherwise, the first exascale computers will require 60MW, 120MW or 200MW — pick your favorite horror figure. I’m not so convinced.

I’m not saying the power estimates for exascale computing are not a problem — they are — but they are not the problem. Because, in the end, it is just a money problem. For most in the community, the objection is not so much to the fact of 60-plus MW supercomputers. Instead, the objection is the resulting operating costs of 60-plus MW supercomputers. We simply don’t want to pay $60 million each year for electricity (or more precisely we don’t want to have to justify to someone else — e.g., funding agencies — that we need to pay that much). But why are we so concerned about large power costs?

Are we really saying, with our concerns over power, that we simply don’t have a good enough case for supercomputing — the science case, business case, track record of innovation delivery, and so on? Surely if supercomputing is that essential, as we keep arguing, then the cost of the power is worth it.

There are several large scientific facilities that have comparable power requirements, often with much narrower missions — remember that supercomputing can advance almost all scientific disciplines — for example, LHC, ITER, NIF, and SNS. And indeed, most of the science communities behind those facilities are also large users of supercomputing.

I occasionally say, glibly and deliberately provocatively, if the scientific community can justify billions of dollars, 100MW of power, and thousands of staff in order to fire tiny particles that most people have never heard of around a big ring of magnets for a fairly narrow science purpose that most people will never understand, then how come we can’t make a case for a facility needing only half of those resources that can do wonders for a whole range of science problems and industrial applications?

[There is a partial answer to that, which I have addressed on my HPC Notes blog to avoid distraction here.]

But secondly, and more importantly, the power problem can be solved with enough money if we can make the case. Accepting huge increases in budgets would also go a long way toward solving several of the other challenges of exascale computing. For example, resiliency could be substantially helped if we could afford comprehensive redundancy and other advanced RAS features; data movement challenges could be helped if we could afford huge increases in memory bandwidth at all levels of the system; and so on.

Those technical challenges would not be totally solved but they would be substantially reduced by money. I don’t mean to trivialize those technical challenges, but certainly they could be made much less scary if we weren’t worried about the cost of solutions.

So, the biggest challenge for exascale computing might not be power (or your other favorite architectural roadblock) but rather our ability to justify enough budget to pay for the power, or more expensive hardware, etc. However, beyond even that, there is a class of challenges for which money alone is not enough.

Assume a huge budget meant an exascale computer with good enough resiliency, plenty of memory bandwidth and every other needed architectural attribute was delivered tomorrow, and never mind the power bills. Could we use it? No. Because of a series of challenges that need not only money, but also lots of time to solve, and in most cases need research because we just don’t know the solutions.

I am thinking of the software related challenges.

Even if we have highly favorable architectures (expensive systems with lots of bandwidth, good resiliency, etc.) I think the community and most, if not all, of the applications are still years away from having algorithms and software implementations that can exploit that scale of computing efficiently.

There is a reasonable effort underway to identify the software problems that we might face in using exascale computing (e.g., IESP and EESI). However, in most cases we can only identify the problems; we still don’t have much idea about the solutions. Even where we have a good idea of the way forward, sensible estimates of the effort required to implement software capable of using exascale computing — OS, tools, applications, post-processing, etc. — is measured in years with large teams.

It certainly requires money, but it needs other scarce resources too, specifically time and skills. That involves a large pool of skilled parallel software engineers, scientists with computational expertise, numerical algorithms research and so on. Scarce resources like these are possibly even harder to create than money!

Power is a problem for exascale computing, and with current budget expectations is probably the biggest technical challenge for the hardware. In terms of getting to exascale computing, demonstrating the value of increased investment in supercomputing to funders and the public/media is probably a more urgent challenge. But the top roadblock for achieving the hugely beneficial potential output from exascale computing is software. There are many challenges to do with the software ecosystem that will take years, lots of skilled workers, and sustained/predictable investment to solve.

That “sustained/predictable” is important. Ad-hoc research grants are not an efficient way to plan and conduct a many-year, many-person, community-wide software research and development agenda. Remember that agenda will consume a non-trivial portion of the careers of many of the individuals involved. And when the researchers start out on this necessary software journey, they need confidence that funding will be there all the way to production deployment and ongoing maintenance many years into the future.

About the Author

Andrew is Vice-President of HPC Services and Consulting at the Numerical Algorithms Group (NAG). He was originally a researcher using HPC and developing related software, later becoming involved in leadership of HPC services. He is also interested in exascale, manycore, skills development, broadening usage, and other future concerns of the HPC community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Expands Worldwide Availability to AMD-based Instances

July 22, 2019

Setting aside potential setbacks caused by U.S. trade policies, the steady cadence of AMD’s revival in HPC and the datacenter continued last week with AWS expanding availability of its AMD Epyc-based instances. Recall Read more…

By Staff

Microsoft Investing $1B in OpenAI Artificial General Intelligence R&D

July 22, 2019

Artificial general intelligence (AGI) is AI’s moonshot, the next giant leap for the AI field. Microsoft regards it to be feasible enough to warrant a $1 billion investment in OpenAI, the not-for-profit research organi Read more…

By Doug Black

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

AWS Solution Channel

Unleashing Seismic Modeling at Scale: We Can’t Stop Quakes, But We Can Be Better Prepared

It has been a scary July so far for many residents of California. A magnitude 6.4 quake struck on July 4 near Ridgecrest (about 194 kilometers northeast of Los Angeles), followed by a magnitude 7.1 quake in the same region on July 5. Read more…

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Visual Capital: Seeing Digital Image and Video Archives as Potential Revenue Streams

As most business owners agree, cash is king. But what if there was a hidden source of revenue that companies are only starting to learn how to exploit? Read more…

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Microsoft Investing $1B in OpenAI Artificial General Intelligence R&D

July 22, 2019

Artificial general intelligence (AGI) is AI’s moonshot, the next giant leap for the AI field. Microsoft regards it to be feasible enough to warrant a $1 billi Read more…

By Doug Black

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This