Exascale: Power Is Not the Problem!

By Andrew Jones

August 29, 2011

To build exascale systems, power is probably the biggest technical hurdle on the hardware side. In terms of getting to exascale computing, demonstrating the value of supercomputing to funders and the public is a more urgent challenge. But the top roadblock for realizing the potential benefits from exascale is software.

That title is probably controversial to most readers. It is likely that if you asked members of the supercomputing community what is the single biggest challenge for exascale computing, the most common answer would be “power.” It is widely reported, widely talked about, and in many places, generally accepted that finding a few orders of magnitude improvement in power consumption is the biggest roadblock on the way to viable exascale computing. Otherwise, the first exascale computers will require 60MW, 120MW or 200MW — pick your favorite horror figure. I’m not so convinced.

I’m not saying the power estimates for exascale computing are not a problem — they are — but they are not the problem. Because, in the end, it is just a money problem. For most in the community, the objection is not so much to the fact of 60-plus MW supercomputers. Instead, the objection is the resulting operating costs of 60-plus MW supercomputers. We simply don’t want to pay $60 million each year for electricity (or more precisely we don’t want to have to justify to someone else — e.g., funding agencies — that we need to pay that much). But why are we so concerned about large power costs?

Are we really saying, with our concerns over power, that we simply don’t have a good enough case for supercomputing — the science case, business case, track record of innovation delivery, and so on? Surely if supercomputing is that essential, as we keep arguing, then the cost of the power is worth it.

There are several large scientific facilities that have comparable power requirements, often with much narrower missions — remember that supercomputing can advance almost all scientific disciplines — for example, LHC, ITER, NIF, and SNS. And indeed, most of the science communities behind those facilities are also large users of supercomputing.

I occasionally say, glibly and deliberately provocatively, if the scientific community can justify billions of dollars, 100MW of power, and thousands of staff in order to fire tiny particles that most people have never heard of around a big ring of magnets for a fairly narrow science purpose that most people will never understand, then how come we can’t make a case for a facility needing only half of those resources that can do wonders for a whole range of science problems and industrial applications?

[There is a partial answer to that, which I have addressed on my HPC Notes blog to avoid distraction here.]

But secondly, and more importantly, the power problem can be solved with enough money if we can make the case. Accepting huge increases in budgets would also go a long way toward solving several of the other challenges of exascale computing. For example, resiliency could be substantially helped if we could afford comprehensive redundancy and other advanced RAS features; data movement challenges could be helped if we could afford huge increases in memory bandwidth at all levels of the system; and so on.

Those technical challenges would not be totally solved but they would be substantially reduced by money. I don’t mean to trivialize those technical challenges, but certainly they could be made much less scary if we weren’t worried about the cost of solutions.

So, the biggest challenge for exascale computing might not be power (or your other favorite architectural roadblock) but rather our ability to justify enough budget to pay for the power, or more expensive hardware, etc. However, beyond even that, there is a class of challenges for which money alone is not enough.

Assume a huge budget meant an exascale computer with good enough resiliency, plenty of memory bandwidth and every other needed architectural attribute was delivered tomorrow, and never mind the power bills. Could we use it? No. Because of a series of challenges that need not only money, but also lots of time to solve, and in most cases need research because we just don’t know the solutions.

I am thinking of the software related challenges.

Even if we have highly favorable architectures (expensive systems with lots of bandwidth, good resiliency, etc.) I think the community and most, if not all, of the applications are still years away from having algorithms and software implementations that can exploit that scale of computing efficiently.

There is a reasonable effort underway to identify the software problems that we might face in using exascale computing (e.g., IESP and EESI). However, in most cases we can only identify the problems; we still don’t have much idea about the solutions. Even where we have a good idea of the way forward, sensible estimates of the effort required to implement software capable of using exascale computing — OS, tools, applications, post-processing, etc. — is measured in years with large teams.

It certainly requires money, but it needs other scarce resources too, specifically time and skills. That involves a large pool of skilled parallel software engineers, scientists with computational expertise, numerical algorithms research and so on. Scarce resources like these are possibly even harder to create than money!

Power is a problem for exascale computing, and with current budget expectations is probably the biggest technical challenge for the hardware. In terms of getting to exascale computing, demonstrating the value of increased investment in supercomputing to funders and the public/media is probably a more urgent challenge. But the top roadblock for achieving the hugely beneficial potential output from exascale computing is software. There are many challenges to do with the software ecosystem that will take years, lots of skilled workers, and sustained/predictable investment to solve.

That “sustained/predictable” is important. Ad-hoc research grants are not an efficient way to plan and conduct a many-year, many-person, community-wide software research and development agenda. Remember that agenda will consume a non-trivial portion of the careers of many of the individuals involved. And when the researchers start out on this necessary software journey, they need confidence that funding will be there all the way to production deployment and ongoing maintenance many years into the future.

About the Author

Andrew is Vice-President of HPC Services and Consulting at the Numerical Algorithms Group (NAG). He was originally a researcher using HPC and developing related software, later becoming involved in leadership of HPC services. He is also interested in exascale, manycore, skills development, broadening usage, and other future concerns of the HPC community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This