Airbus Buys Into HPC-as-a-Service

By Michael Feldman

October 18, 2011

High performance computing is getting cheaper every year. But that doesn’t remove the burden of buying these systems on a regular basis when your organization demands ever-increasing computing power to stay competitive. That’s the dilemma a lot of commercial HPC users find themselves in as they wonder how often they should upgrade their HPC machinery. At least one company, Airbus, determined buying HPC systems wasn’t such a great deal after all.

Like all major aircraft manufacturers, Airbus uses high performance computing to support its engineering design work. The company employs it for all its engineering simulation work including wind tunnel aerodynamics, aircraft structure design, composite material design, strength analysis, and acoustic modeling for both the interior of the aircraft and the exterior engine noise. It’s also used in the embedded systems that run the avionics, environmental alert system, and fuel tank and pump calculations. To design these increasingly sophisticated aircraft and go head-to-head against competitors like Boeing requires lots of computational horsepower.

Airbus determined that to keep up they would have to increase their HPC capacity — measured as price for a given number of flops — by a factor of 1.8 every year. The company employs a set of actual engineering codes to benchmark that performance and makes sure that newer HPC systems being considered for deployment fulfill that goal.

The secondary objective was to maximize price-performance. In 2007, after doing a the cost analysis, the Airbus bean counters decided it would make more sense for the company to rent HPC, rather than acquire the systems outright. Up until then, the aircraft manufacturer had bought their own HPC clusters, installed them in Airbus datacenters, and maintained them for the entire lifetime of those systems.

According to Marc Morere, who heads Functional Design IT Architecture & Projects group at Airbus, moving to a rent/lease model meant that the money that would have gone into buying equipment could now be applied to buying more HPC capacity. Or as Morere put it: “We prefer to use the costs for our aircraft program, rather than to negotiate with the bank.”

For HPC infrastructure in particular, they determined that it was better for them to pay in increments, rather than up front. Morere says if they finance HPC systems, they can depreciate the hardware, but those depreciation terms always run five years. Unfortunately, that’s two years longer than Airbus would want to actually operate the hardware. With a company goal of a 1.8-fold increase in HPC capacity each year, the recurring costs after three years became too high to justify keeping the older systems running. “The technology moves too quickly,” says Morere

In 2007, they first looked into a pure HPC on-demand model, where they would just buy compute cycles. But according to Morere, they couldn’t find a satisfactory solution with HP or any other vendor they talked with. The idea then morphed into a service model where HPC systems would be deployed outside of the Airbus datacenters and leased back to company.

The only real downside, when compared to the on-demand model, is that a service entails a flat fee, where you pay the same amount regardless of the available compute capacity consumed. On the flip side, it’s easier for the accountants to budget in a fixed monthly cost than one that could vary through time — based not just on changing computational needs, but also on the volatility of electricity costs and the more variable costs of labor.

In 2007 and 2008, they contracted IBM to host Airbus HPC systems off-site in IBM’s own datacenter. Airbus tapped into the systems remotely for their engineering simulations, but because of the distance between the Airbus research sites and the datacenter, network performance sometimes limited what could be accomplished .

Then in 2009, Airbus inked a deal with HP to install containerized Performance Optimized Datacenters (POD) on-site, but with HP running the infrastructure as a service. Although the PODs were on Airbus property, they didn’t require a datacenter habitat, so the containerized clusters could be set up virtually anywhere there was electricity and water. The HP service contract included all the hardware, system setup, maintenance, operation of software, cooling, UPS, and generators. HP even pays the electric bill. All to this is wrapped up in a monthly service fee they charge to Airbus.

Other bidders on the 2009 contract included IBM, SGI, Bull, and T Systems. Morere says in the end it came down to IBM and HP, with the others being too expensive for the type of all-inclusive service Airbus was interested in. According to Morere, HP was chosen because it had the best technical solution and the best price-performance.

The first phase of the HP contract resulted in the deployment of POD in Toulouse France in 2009. Another POD was added in Hamburg, Germany in 2010. The original Toulouse POD, based on Intel Nehalem CPUs was retired in August 2011.

The Toulouse POD was replaced with two Intel Westmere-based PODs with the latest InfiniBand technology. That system, which currently sits at number 29 on the TOP500 list, went into production in July 2011. It consists of 2,016 HP ProLiant BL280 G6 blade servers, and delivers about 300 teraflops of peak performance. Although all those servers fit into two containers, each 12 meters long, they deliver the equivalent of 1,000 square meters of datacenter HPC.

Because the PODs in Toulouse are on Airbus premises, about 50 meters from the company’s main computer facility, they were able to link the HPC cluster to the machines in the datacenter with four 10GbE links. That kind of direct hookup delivered very low latency as well as plenty of bandwidth.

At this point one might ask, why Airbus even operates its own datacenters anymore? Currently the facilities are being used for application servers, storage, and database work. Some of these in-house systems include HP blades, but at this point,  not PODs. All the pre-processing and post-processing for the HPC work is performed by these datacenter systems. But since these types of applications are not so performance bound, the servers there can operate for five years or longer, and thus take advantage of a standard depreciation cycle.

Whether HPC-as-a-service becomes more widespread remains to be seen. Not every customer feels the need to increase HPC capacity at the rate Airbus does, nor does every company buy enough HPC equipment to make a service contract a viable option. But at least for Airbus, they seem to have found the financial model and the type of system that makes sense for them.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This