Airbus Buys Into HPC-as-a-Service

By Michael Feldman

October 18, 2011

High performance computing is getting cheaper every year. But that doesn’t remove the burden of buying these systems on a regular basis when your organization demands ever-increasing computing power to stay competitive. That’s the dilemma a lot of commercial HPC users find themselves in as they wonder how often they should upgrade their HPC machinery. At least one company, Airbus, determined buying HPC systems wasn’t such a great deal after all.

Like all major aircraft manufacturers, Airbus uses high performance computing to support its engineering design work. The company employs it for all its engineering simulation work including wind tunnel aerodynamics, aircraft structure design, composite material design, strength analysis, and acoustic modeling for both the interior of the aircraft and the exterior engine noise. It’s also used in the embedded systems that run the avionics, environmental alert system, and fuel tank and pump calculations. To design these increasingly sophisticated aircraft and go head-to-head against competitors like Boeing requires lots of computational horsepower.

Airbus determined that to keep up they would have to increase their HPC capacity — measured as price for a given number of flops — by a factor of 1.8 every year. The company employs a set of actual engineering codes to benchmark that performance and makes sure that newer HPC systems being considered for deployment fulfill that goal.

The secondary objective was to maximize price-performance. In 2007, after doing a the cost analysis, the Airbus bean counters decided it would make more sense for the company to rent HPC, rather than acquire the systems outright. Up until then, the aircraft manufacturer had bought their own HPC clusters, installed them in Airbus datacenters, and maintained them for the entire lifetime of those systems.

According to Marc Morere, who heads Functional Design IT Architecture & Projects group at Airbus, moving to a rent/lease model meant that the money that would have gone into buying equipment could now be applied to buying more HPC capacity. Or as Morere put it: “We prefer to use the costs for our aircraft program, rather than to negotiate with the bank.”

For HPC infrastructure in particular, they determined that it was better for them to pay in increments, rather than up front. Morere says if they finance HPC systems, they can depreciate the hardware, but those depreciation terms always run five years. Unfortunately, that’s two years longer than Airbus would want to actually operate the hardware. With a company goal of a 1.8-fold increase in HPC capacity each year, the recurring costs after three years became too high to justify keeping the older systems running. “The technology moves too quickly,” says Morere

In 2007, they first looked into a pure HPC on-demand model, where they would just buy compute cycles. But according to Morere, they couldn’t find a satisfactory solution with HP or any other vendor they talked with. The idea then morphed into a service model where HPC systems would be deployed outside of the Airbus datacenters and leased back to company.

The only real downside, when compared to the on-demand model, is that a service entails a flat fee, where you pay the same amount regardless of the available compute capacity consumed. On the flip side, it’s easier for the accountants to budget in a fixed monthly cost than one that could vary through time — based not just on changing computational needs, but also on the volatility of electricity costs and the more variable costs of labor.

In 2007 and 2008, they contracted IBM to host Airbus HPC systems off-site in IBM’s own datacenter. Airbus tapped into the systems remotely for their engineering simulations, but because of the distance between the Airbus research sites and the datacenter, network performance sometimes limited what could be accomplished .

Then in 2009, Airbus inked a deal with HP to install containerized Performance Optimized Datacenters (POD) on-site, but with HP running the infrastructure as a service. Although the PODs were on Airbus property, they didn’t require a datacenter habitat, so the containerized clusters could be set up virtually anywhere there was electricity and water. The HP service contract included all the hardware, system setup, maintenance, operation of software, cooling, UPS, and generators. HP even pays the electric bill. All to this is wrapped up in a monthly service fee they charge to Airbus.

Other bidders on the 2009 contract included IBM, SGI, Bull, and T Systems. Morere says in the end it came down to IBM and HP, with the others being too expensive for the type of all-inclusive service Airbus was interested in. According to Morere, HP was chosen because it had the best technical solution and the best price-performance.

The first phase of the HP contract resulted in the deployment of POD in Toulouse France in 2009. Another POD was added in Hamburg, Germany in 2010. The original Toulouse POD, based on Intel Nehalem CPUs was retired in August 2011.

The Toulouse POD was replaced with two Intel Westmere-based PODs with the latest InfiniBand technology. That system, which currently sits at number 29 on the TOP500 list, went into production in July 2011. It consists of 2,016 HP ProLiant BL280 G6 blade servers, and delivers about 300 teraflops of peak performance. Although all those servers fit into two containers, each 12 meters long, they deliver the equivalent of 1,000 square meters of datacenter HPC.

Because the PODs in Toulouse are on Airbus premises, about 50 meters from the company’s main computer facility, they were able to link the HPC cluster to the machines in the datacenter with four 10GbE links. That kind of direct hookup delivered very low latency as well as plenty of bandwidth.

At this point one might ask, why Airbus even operates its own datacenters anymore? Currently the facilities are being used for application servers, storage, and database work. Some of these in-house systems include HP blades, but at this point,  not PODs. All the pre-processing and post-processing for the HPC work is performed by these datacenter systems. But since these types of applications are not so performance bound, the servers there can operate for five years or longer, and thus take advantage of a standard depreciation cycle.

Whether HPC-as-a-service becomes more widespread remains to be seen. Not every customer feels the need to increase HPC capacity at the rate Airbus does, nor does every company buy enough HPC equipment to make a service contract a viable option. But at least for Airbus, they seem to have found the financial model and the type of system that makes sense for them.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This