Airbus Buys Into HPC-as-a-Service

By Michael Feldman

October 18, 2011

High performance computing is getting cheaper every year. But that doesn’t remove the burden of buying these systems on a regular basis when your organization demands ever-increasing computing power to stay competitive. That’s the dilemma a lot of commercial HPC users find themselves in as they wonder how often they should upgrade their HPC machinery. At least one company, Airbus, determined buying HPC systems wasn’t such a great deal after all.

Like all major aircraft manufacturers, Airbus uses high performance computing to support its engineering design work. The company employs it for all its engineering simulation work including wind tunnel aerodynamics, aircraft structure design, composite material design, strength analysis, and acoustic modeling for both the interior of the aircraft and the exterior engine noise. It’s also used in the embedded systems that run the avionics, environmental alert system, and fuel tank and pump calculations. To design these increasingly sophisticated aircraft and go head-to-head against competitors like Boeing requires lots of computational horsepower.

Airbus determined that to keep up they would have to increase their HPC capacity — measured as price for a given number of flops — by a factor of 1.8 every year. The company employs a set of actual engineering codes to benchmark that performance and makes sure that newer HPC systems being considered for deployment fulfill that goal.

The secondary objective was to maximize price-performance. In 2007, after doing a the cost analysis, the Airbus bean counters decided it would make more sense for the company to rent HPC, rather than acquire the systems outright. Up until then, the aircraft manufacturer had bought their own HPC clusters, installed them in Airbus datacenters, and maintained them for the entire lifetime of those systems.

According to Marc Morere, who heads Functional Design IT Architecture & Projects group at Airbus, moving to a rent/lease model meant that the money that would have gone into buying equipment could now be applied to buying more HPC capacity. Or as Morere put it: “We prefer to use the costs for our aircraft program, rather than to negotiate with the bank.”

For HPC infrastructure in particular, they determined that it was better for them to pay in increments, rather than up front. Morere says if they finance HPC systems, they can depreciate the hardware, but those depreciation terms always run five years. Unfortunately, that’s two years longer than Airbus would want to actually operate the hardware. With a company goal of a 1.8-fold increase in HPC capacity each year, the recurring costs after three years became too high to justify keeping the older systems running. “The technology moves too quickly,” says Morere

In 2007, they first looked into a pure HPC on-demand model, where they would just buy compute cycles. But according to Morere, they couldn’t find a satisfactory solution with HP or any other vendor they talked with. The idea then morphed into a service model where HPC systems would be deployed outside of the Airbus datacenters and leased back to company.

The only real downside, when compared to the on-demand model, is that a service entails a flat fee, where you pay the same amount regardless of the available compute capacity consumed. On the flip side, it’s easier for the accountants to budget in a fixed monthly cost than one that could vary through time — based not just on changing computational needs, but also on the volatility of electricity costs and the more variable costs of labor.

In 2007 and 2008, they contracted IBM to host Airbus HPC systems off-site in IBM’s own datacenter. Airbus tapped into the systems remotely for their engineering simulations, but because of the distance between the Airbus research sites and the datacenter, network performance sometimes limited what could be accomplished .

Then in 2009, Airbus inked a deal with HP to install containerized Performance Optimized Datacenters (POD) on-site, but with HP running the infrastructure as a service. Although the PODs were on Airbus property, they didn’t require a datacenter habitat, so the containerized clusters could be set up virtually anywhere there was electricity and water. The HP service contract included all the hardware, system setup, maintenance, operation of software, cooling, UPS, and generators. HP even pays the electric bill. All to this is wrapped up in a monthly service fee they charge to Airbus.

Other bidders on the 2009 contract included IBM, SGI, Bull, and T Systems. Morere says in the end it came down to IBM and HP, with the others being too expensive for the type of all-inclusive service Airbus was interested in. According to Morere, HP was chosen because it had the best technical solution and the best price-performance.

The first phase of the HP contract resulted in the deployment of POD in Toulouse France in 2009. Another POD was added in Hamburg, Germany in 2010. The original Toulouse POD, based on Intel Nehalem CPUs was retired in August 2011.

The Toulouse POD was replaced with two Intel Westmere-based PODs with the latest InfiniBand technology. That system, which currently sits at number 29 on the TOP500 list, went into production in July 2011. It consists of 2,016 HP ProLiant BL280 G6 blade servers, and delivers about 300 teraflops of peak performance. Although all those servers fit into two containers, each 12 meters long, they deliver the equivalent of 1,000 square meters of datacenter HPC.

Because the PODs in Toulouse are on Airbus premises, about 50 meters from the company’s main computer facility, they were able to link the HPC cluster to the machines in the datacenter with four 10GbE links. That kind of direct hookup delivered very low latency as well as plenty of bandwidth.

At this point one might ask, why Airbus even operates its own datacenters anymore? Currently the facilities are being used for application servers, storage, and database work. Some of these in-house systems include HP blades, but at this point,  not PODs. All the pre-processing and post-processing for the HPC work is performed by these datacenter systems. But since these types of applications are not so performance bound, the servers there can operate for five years or longer, and thus take advantage of a standard depreciation cycle.

Whether HPC-as-a-service becomes more widespread remains to be seen. Not every customer feels the need to increase HPC capacity at the rate Airbus does, nor does every company buy enough HPC equipment to make a service contract a viable option. But at least for Airbus, they seem to have found the financial model and the type of system that makes sense for them.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This