Software Tools Will Need Refresh for ORNL’s Titan Supercomputer

By Eric Gedenk

November 21, 2011

Application tools critical as programs move toward exascale computing

Oak Ridge National Laboratory’s (ORNL’s) National Center for Computational Sciences is a Department of Energy (DOE) supercomputing center that houses the Oak Ridge Leadership Computing Facility (OLCF) and the Jaguar supercomputer, a Cray XT5 capable of more than 2.3 petaflops, or 2.3 quadrillion calculations per second. In 2012 the OLCF will begin to upgrade Jaguar, boosting its computational ability by up to ten-fold. The upgrade will result in Jaguar’s becoming Titan, a computer capable of 10 to 20 petaflops and the center’s next premier resource for scientific computing. Titan’s arrival will bring fundamental changes to the OLCF’s supercomputing operation, primarily due to the incorporation of hybrid computing architectures that feature both central and graphics processing units (CPUs and GPUs).

Richard Graham heads the OLCF’s Application Performance Tools Group, which identifies software tools and missing tool capabilities to help science and engineering researchers improve the performance of applications that run on leadership-class computers. The group’s focus is on four main tools: compilers, which transform software languages such as Fortran into instructions that a computer understands; debuggers, which help identify errors in users’ source codes; performance analysis tools, which help us understand the  performance characteristics of applications; and communication libraries, which direct communications between different computation nodes in a computer.

Prior to joining ORNL, Graham served as the acting group leader of Los Alamos National Laboratory’s Advanced Computing Laboratory and cofounded its Open MPI project, striving to universalize message passing interface software across multiple platforms. Graham also worked for Cray Research and SGI.

In this interview Graham discusses the challenges presented by new hybrid computer architectures such as Titan’s. His group’s goal is to make sure that the OLCF is prepared to offer researchers the most up-to-date and efficient tools possible to make effective use of a new high-performance computing (HPC) environment.

HPCwire: How do you assemble the tools to shift computing architectures?

Richard Graham: First of all we need to determine the hardware characteristics because those ultimately determine what can be done and what the software can potentially do. That’s the first step, understanding the new hardware and how it’s different from previous hardware. Then we decide which tools—pieces of software that enable application scientists to do the work they want to carry out—are of interest to us, and whether these current tools are sufficient. And by sufficient I mean in the context of our production environment, Jaguar. If they are not, we need to understand if we can enhance the current tool set, or if we need to go out and see if there is something else out there. If there isn’t, we obviously need to figure out how to fill the gap. The first thing we try to do is decide if there is a starting point we can use, and if there is not, then we need to create one. That involves talking with vendors and universities, understanding their plans, and understanding what they currently have that could be of use to us.

In terms of computational characteristics, you need to have a lot of vector-like, available parallelism in your application and be able to do a lot of the same computations in parallel, so any code that has nice loops and a lack of data dependency between the loops is very well suited for hybrid architectures. You also need to understand how to map the parallelism to the underlying hardware. The big issue, though, is that moving the data from the CPU to the GPU takes a long time. Ideally you want to keep the GPU occupied [with large computation] to hide the cost of data transfer between the GPU and CPU. So you either keep data permanently on the GPU so you don’t have to transfer a lot of it, or else you have to have a sufficient amount of work to be able to keep the GPU busy and hide the cost of moving data onto the GPU. New data or work decomposition schemes need to be explored.

HPCwire: How will Titan’s architecture change the way supercomputers operate? 

Graham: The big difference is that we have two very different computing capabilities on a single node comprised of an AMD CPU and an NVIDIA GPU. The CPU is for general-purpose calculations. We’re very familiar with CPUs in the sense that we know how to analyze what happens on them to a certain degree. Then you have a very different accelerator in the GPU that has the potential for very high performance but has less capability than the general-purpose CPU in the sort of operations it can perform. The GPU schedules operations in a certain way and tries to position itself to be able to run at parallel effectively. So the challenge is how to use both the CPU and GPU efficiently in a general-purpose computing environment. 

From a tools perspective, the major difference is that there is a lot less support for GPU tools than there is for CPUs in the HPC environment, and even fewer that target both. This is because few tools have been ported to the GPU environment, and less detailed information is made available by the GPUs. There is “knitting” to the way applications tend to use these things; they use CPUs with GPUs as accelerators to do certain portions of the work, so the data from the two types of processors needs to be merged if you’re trying to look at overall utilization and get an overall picture of how the application is running.

HPCwire: What contributed to petascale success, and what is shaping the push to exascale?

Graham: I think the major tool that contributed to petascale success was having good programming models, languages, libraries, and optimizing compilers, which take an abstract programming language and turn it into a set of instructions for computers to understand. If you’re looking at it from a tools perspective, performance analysis tools are also needed, but without compilers we couldn’t run the codes as we are now. Debuggers are important, but up until a year ago, debuggers did not run at scale. That’s actually one of the achievements we’ve had on a project at the OLCF. With one of our partners, Allinea, we’ve really changed the debugging paradigm by scaling up a debugger called DDT. We’ve been able to basically debug at full scale on Jaguar, even though three years ago people claimed you couldn’t do parallel debugging beyond several hundred to several thousand processes. Now, my group routinely debugs parallel code at over 100,000 processes using DDT. It’s much more effective than trying to use the old techniques. No other debugger can even come close to DDT’s performance, so obviously it’s a hit with users.

As part of the OLCF 3 project, we’ve been working with different software vendors. One, CAPS Enterprise, is a compiler company out of France that produces the HMPP [hybrid multicore parallel programming] compiler, which targets GPUs. We’ve been working with them for two years now enhancing their compiler to meet our needs, and we’ve been very pleased with the partnership. The work has resulted in significant capabilities being added to the compiler that help us incrementally transition our existing applications to accelerator-based computers and has led to some nice performance enhancements. It is one of several compilers that we will support on the system. We have also been working on scalability.

As computer architectures get bigger, scalability becomes an issue. Another critical piece is the Vampir Suite of performance analysis tools. Those tools are coming out of the Technical University of Dresden, and they perform what is called trace-based performance analysis, which collects performance data in the context of the call stack, not only the program counter. The emphasis is on adding capabilities to simultaneously collect data from CPUs and GPUs, but they are also doing a lot of scalability work. They recently decided to work with Terry Jones, a member of my group, who helped in the context of another DOE-funded project to transfer data from hosts to collectors. Basically they’ve been able to run trace-based applications at 200,000 processes. The previous record was on the order of 100,000, and it was very slow.

Before this effort people didn’t really consider doing this type of analysis beyond maybe several thousand processes, so there has been a significant advance in capabilities. This group continues to work on making data collection more practical. We have also emphasized the integration among the different tools of the programming environment.

A common trait behind all of these three collaborations is that we went with companies that already had an existing product, so we weren’t starting from scratch. And because they were existing companies, the second thing is they already had a support infrastructure in place. The third thing is that they were very willing to include enhancements for our needs in their products, so we were really funding to improve their main product line, which is also very beneficial to us.

HPCwire: How will you help get users up to scale with Titan?

Graham: I think the first problem is in current compilers and runtime environments—things that allow users access to the system. Right now most of these components are very primitive, and for a lot of the codes, there’s a lot of code restructuring you have to do manually. The real need is for a set of compiler-based code-transformation tools that will simplify the process and automate as many of the transformations as possible. But before we get there, a big issue is the lack of widely accepted programming models to make this possible. There are some standardization efforts under way, but they’re far from completion, and we will have to see how users take to them. There are parallel languages that people can use, but they’re not widely used. Chapel is one that people keep pointing to, as it was developed in the context of high-performance computing. You also have Fortran trying to bring in some versions that could help to a certain degree.

Historically these shifts in computing are nothing new. This is the way it’s been for a long time, but I can remember the transition from vector processing to the sort of computing that we do now—parallel processing on microprocessors. It has taken about 10 years to make that transition, and by that I mean for a large body of code to run well. So it may take another 10 years for microprocessor-based architectures to fully transform into some sort of heterogeneous multicore computer system. It is not going to be pleasant. It’s going to be very expensive, and they really need something to help in that process. 

Thankfully there is a research community out there that is interested in looking at these sorts of problems. People have been thinking about these types of issues, and so there’s definitely a demand to overcome the obstacles. This is not something that will be done overnight, and it is not just a technical challenge. You also have to have application developers use what is being produced. I’m sure there are different views on how to go about this. I think there are good ideas out there. It’s just an issue of people having the time to do something with the ideas and then have those ideas become things that a commercial company is willing to support, because without that, there is just another set of nice ideas that never influences the community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign European computing: its first European factory, housed in the C Read more…

Hyperion Study Tracks Rise and Impact of Linux Supercomputers

May 17, 2022

That supercomputers produce impactful, lasting value is a basic tenet among the HPC community. To make the point more formally, Hyperion Research has issued a new report, The Economic and Societal Benefits of Linux Super Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. K Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Person to Watch. In this exclusive Q&A, Culhane covers her Read more…

AWS Solution Channel

shutterstock 1103121086

Encoding workflow dependencies in AWS Batch

Most users of HPC or Batch systems need to analyze data with multiple operations to get meaningful results. That’s really driven by the nature of scientific research or engineering processes – it’s rare that a single task generates the insight you need. Read more…

Argonne Supercomputer Advances Energy Storage Research

May 13, 2022

The lack of large-scale energy storage bottlenecks many sources of renewable energy, such as sunlight-reliant solar power and unpredictable wind power. Researchers from Lawrence Livermore National Laboratory (LLNL) are w Read more…

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign Eur Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Per Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Intel Extends IPU Roadmap Through 2026

May 10, 2022

Intel is extending its roadmap for infrastructure processors through 2026, the company said at its Vision conference being held in Grapevine, Texas. The company's IPUs (infrastructure processing units) are megachips that are designed to improve datacenter efficiency by offloading functions such as networking control, storage management and security that were traditionally... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Intel’s Habana Labs Unveils Gaudi2, Greco AI Processors

May 10, 2022

At the hybrid Intel Vision event today, Intel’s Habana Labs team launched two major new products: Gaudi2, the second generation of the Gaudi deep learning training processor; and Greco, the successor to the Goya deep learning inference processor. Intel says that the processors offer significant speedups relative to their predecessors and the... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire