Mastering Windows Azure Application Development

By Dmitry Yakovlev

January 10, 2012

Cloud Landscape

Before mastering cloud application development is discussed, it’s important to go over the existing cloud landscape. There are four major cloud computing platforms available on the market today: Amazon EC2, Windows Azure, Google App Engine and Force.com. Each of these platforms is a more or less successful attempt to commercialize internally-crafted virtualization technology. While Amazon and Microsoft succeeded in building general-purpose cloud environment, Google and SalesForce remain niche players due rudiments of internally-grown technology and use of programming languages like Python and APEX.

Windows Azure cloudIn the years to come, cloud computing will take a substantial piece of the market from traditional deployment models. This implies growing demand for applications that can operate in a cloud environment, and for software engineers skilled in cloud computing technologies. Since commercial software development is driven by enterprises which prefer mainstream technologies, Amazon EC2 and Windows Azure are likely to be the two platforms of choice for software developers. Considering the fact that both platforms can host applications written in different programming languages, one should denote Java and .NET as primary development platforms for Amazon EC2 and Windows Azure respectively.

In this article we will focus on mastering application development for Windows Azure which is a valuable investment for a .NET programmer.

Required Knowledge

Let’s discuss specific skills required for Windows Azure application development, things to start with and areas to be studied.

Mandatory Skills

A programmer looking to dive into Windows Azure application development should have a working knowledge of Microsoft .NET technologies. Particular skills are:

  • .NET Framework 4.0

  • ADO.NET Data Services

  • LINQ

  • Windows Communication Foundation (WCF)

  • ASP.NET MVC 3.0

  • Multi-threading

Developers should be familiar with RDMS concepts and MS SQL 2008. Additionally, a solid understanding of HTTP protocol and REST concept is very desirable as it helps to assess the implications of network topology (load balancers, proxy servers, CDNs) on RESTful web services. Knowledge of Service Oriented Architecture (SOA) design principles is essential as cloud applications strongly rely on services.

Cloud Concepts

  1. The first logical step is to become familiar with cloud-related concepts and to adopt the principles of cloud application development. There is a lot of information on the Web about cloud computing. From a software developer’s perspective, cloud can be treated as a way to get on-demand access to two types of scalable resources: compute (CPU) and storage which are available via services provided by the cloud platform.

  1. The second step is to learn how Windows Azure hosting environment works in detail. There is a good presentation at Channel9 describing platform infrastructure and application lifecycle. As result of this step, a developer should recognize and adopt the following ideas:

    • Cloud application runs in a bare Windows 2008 operating system
      Don’t assume that Windows Azure hosting environment has any preinstalled software; it’s a bare operating system. Any functionality, usually supported by preinstalled software, should be instead implemented within the application hosted on Windows Azure.

    • The application instance can be recycled by the platform at any point of time
      Everything stored on a local disk drive memory will be deleted once the instance is recycled. To preserve the data and make it available to other instances, use Windows Azure Storage services.

    • Cloud application runs in a concurrent environment
      Services provided by Windows Azure platform are designed to operate in concurrent environments with the use of “try and correct” pattern. The application should follow this pattern and properly handle cases in which access to a service is declined by repeating the operation later. Another aspect to keep in mind in that a web application under Windows Azure always runs behind load balancer.

Getting Started with Windows Azure Development

I would recommend beginning by reading a book by Tejawsi Redkar “Windows Azure Platform” (second edition) which gives a good introduction to Windows Azure for beginners.

Setting Up the Development Environment

First, one has to setup the development environment. Windows Azure development environment requires Windows Vista SP2, Windows 7 or Windows 2008 operating system. The following software should be installed:

At this stage, one should be able to open Visual Studio and create a blank Windows Azure solution. As an exercise, I would suggest implementing a simple online photo storage application.

Web, Worker and VM Roles

Learn three types of application roles supported by Windows Azure:

  • Web role

  • Worker role

  • Virtual Machine (VM) role

The first two roles are analogs of traditional web application and Windows services. VM role is somewhat special and shouldn’t be used unless a customized version of a guest operating system is required. Using VM roles puts the burden of OS support on the system administrator.

Pay attention when logging in to the Windows Azure application. Remember that debugging a cloud application is rather hard, if at all possible. Therefore, the application should emit and store enough debugging information to allow for discovering and tracing problems in the code.

Storage Services

There are three types of storage supported by Windows Azure platform:

  • Blob storage

  • Table storage

  • Queue storage

The services are exposed via REST API and available outside of Windows Azure hosting environment as well, so one can create an application for a mobile device which interacts directly with the storage. Windows Azure SDK comes with a managed library providing access to storage services via an object model.

There are several important things to know when working with Azure storage:

  • Storage objects are addressed by URL, so certain restrictions are applied to the object name.

  • There are three types of blobs: single blob, block blob and page blob. Each of them has a minimum and a maximum size.

  • Table storage is not a relational database. There are no relationships, indexes and constraints. It’s more like an Excel spreadsheet highly scalable in the number of rows.

  • A table always includes two properties (PartitionKey and RowKey) forming a primary key, the total length of the key can’t exceed 1024 symbols. Only 256 symbols of the primary key can be used to address the record.

  • Table always includes Timestamp field used to resolve conflicts

  • Table has limits of 1M per entity (row) and 64K per property (field)

  • Sorting is not supported by Table storage, so it’s always done on the client side.

  • Maximum number of records returned by a query against Table is limited to 1,000 entities per request. A continuation token should be used to retrieve subsequent data.

Windows Azure storage services should be studied in detail, with particular attention paid to addressing a scheme, size limits, and operation restrictions. This knowledge will prevent you from making wrong decisions in the design of your cloud application.

Among other things worth taking a look at, I would recommend a comprehensive study of Azure storage performance http://azurescope.cloudapp.net/BenchmarkTestCases/ which gives a good idea of storage throughput under different scenarios.

Azure SQL

Azure SQL is a cloud version of regular MS SQL database. It looks like a complete replacement of regular MS SQL database with minor restrictions on T-SQL syntax. However, the fundamental restriction of Azure SQL is size limit of 50Gb per database, so it’s not entirely scalable. Recognizing this fact is important for application architecture. You should store in Azure SQL only data which shouldn’t grow substantially, e.g., a list of user accounts. Quite often developers try to employ Azure SQL to store things like pictures, documents, logs, etc., so the storage space gets exhausted quite soon and the system fails.

Azure SQL databases are available outside of Windows Azure hosting environment. It is possible to setup access restrictions based on an IP address.

AppFabric

Windows Azure AppFabric is a set of middleware services designed to facilitate development of enterprise applications on top of Windows Azure. Currently, the SDK and services are available as a CTP release. Learning AppFabric SDK is not required to develop Windows Azure applications, however one service highly demanded by developers to take note of: Cache service which provides fast access to in-memory data storage. Here I refer to the fact that Windows Azure doesn’t provide a way to store web session data, so developers have to implement a custom version session provider relying on Windows Azure storage. The new Cache service addresses this issue.

There is a good up-to-date reading about AppFabric by Alan Smith available for free at http://www.cloudcasts.net/devguide/

Deployment

You have arrived at the stage when your first Windows Azure application is implemented and tested in the development environment. To deploy the application to the Windows Azure environment, you need to sign up for the service. There is a free trial available for 90 days (valid credit card is required).

Once the account is set, you can create a storage account and a hosted service. Each hosted service supports two environments: staging and production. Deploying the application is quite simple and requires uploading a package and a configuration file. The application in the staging environment is available under a private URL for testing purposes. Once the staging environment is tested, it can be switched to production in a single click. Now you have your Windows Azure application running.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Leading Solution Providers

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This