Intel Touts New Energy-Efficient Circuitry

By Michael Feldman

February 20, 2012

Intel will be figuring prominently at this week’s IEEE International Solid-State Circuits Conference (ISSCC) in San Francisco, where researchers will be presenting a raft of emerging technologies — everything from integrated digital radio to optical interconnects. But some of the chipmaker’s most interesting presentations are being devoted to low-power circuitry.

In a prelude to ISSCC, Intel CTO Justin Rattner held a press briefing last week, outlining a couple of energy-focused technologies they’ve been working on. Specifically, Rattner spoke about the ongoing research with near threshold voltage circuitry designs and a new variable precision floating point unit. While both technologies are still confined to the research labs, Intel looks to be grooming them for their commercial debut.

The idea behind near threshold voltage (NTV), said Rattner, is to design circuit logic or memory that can operate at very low power voltage, thereby saving on energy. As its name implies, NTV works at just a notch above the transistor threshold level, that is, the point at which the device would actually shut off. The advantage to this is that transistors exhibits peak energy efficiencies in this NTV range — on the order of 5 to 10 times more efficient than when operating at “normal” levels.

For a microprocessor, this means you can decrease the voltage significantly, enabling a standard CPU, like a Pentium, to be powered by just a few milliwatts. The downside is that as voltage is squeezed, the clock frequency drops, thereby slowing throughput. But since frequency only decreases linearly with voltage, while power decreases quadratically, throughput per watt should be much better.

Another advantage of NTV circuitry is that it enables a much greater dynamic voltage range. So you can crank the clock up and down more easily, thus providing more control over the balance between performance and energy use. This is ideal for settings where the workload is variable, but where you might want to max out performance for at least some of the applications.

Of course, since maximum energy savings comes from keeping the voltages low, it makes more sense to use more (if slower) NTV processors for a given application, as long as you can parallelize your code sufficiently. Rattner said one potential application area for this technology is exascale hardware, where any loss of individual processor performance is naturally compensated for by the scale of the system.

At the Intel Developer Forum last fall, the company demonstrated an NTV prototype, known as Claremont, which was essentially a Pentium chip overlaid with NTV circuitry. At ISSCC this week, they will show how that design can operate between 3MHz and 915MHz, and is able to achieve up to 4.7 times better energy efficiency than a standard chip. At the most conservative voltage levels, the processor is able to run with a mere 2 milliwatts of power.

The NTV technology can also be applied to memory circuits and graphics logic, something Intel will demonstrate at ISSCC with an NTV-tweaked SIMD engine for processor graphics. In this case, since the graphics logic was designed with NTV in mind (unlike the Claremont Pentium-based prototype), the researchers were able to achieve a 9-fold increase in energy efficiency.

Intel is also wrapping low-power technology into floating point logic, one of the biggest energy hogs on microprocessors. Part of the problem is that floating point units operate at maximum precision (or more typically at two levels — single and double precesion) thus wasting computational bandwidth and storage. As Rattner noted that most programmers opt to use the default 64-bit floating point level, not realizing that in most cases, far less precision is required to get the correct answer.

To address the problem, Intel has invented what they call their “Variable Precision Floating Point Unit. The idea here is to build smarts into the hardware such that the computation is confined to the significant digits rather than the programmer-defined value. Intel’s has built an FP unit prototype that automagically right-sizes the floating point computation by using something called certainty tracking to determine the required accuracy.

The prototype has three floating point gears: 24-bit, 12-bit and 6-bit, and uses the certainty tracking to determine which bit width is appropriate. When less digits are warranted, there are fewer bits to shuffle, so not only is energy saved, but performance is increased as well.

Rattner claimed the design is able to cut energy consumption by as much as 50 percent over a conventional FP design. According to Intel, the prototype, which is clocked at 1.45GHz, is able to deliver between 52 and 162 gigaflops/watt. Intel estimates that if they used NTV techniques on their variable precision floating point design, they could realize an additional 7-fold efficiency gain. (For reference, a 20MW exaflop system needs an energy efficiency of just 50 gigaflops/watt, but that includes the entire microprocessor as well as external memory, I/O chips, network fabric, and so on.)

Rattner said the technology is applicable to GPUs (especially for visual computing and traditional graphics) and HPC-type processor designs. In the case of the latter, the implication is that it could be used for Intel’s Many Integrated Core (MIC) processors, which are essentially big floating point processors in an x86 wrapper. In both the graphics and HPC case, the energy efficiency of the floating point hardware is critical to the value proposition of the associated products.

“We have lots of plans for this technology,” said Rattner, “and you can certainly expect to see it as we move out toward the middle of the decade and beyond, where these energy challenges become even more severe than they are today.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This