Intel Touts New Energy-Efficient Circuitry

By Michael Feldman

February 20, 2012

Intel will be figuring prominently at this week’s IEEE International Solid-State Circuits Conference (ISSCC) in San Francisco, where researchers will be presenting a raft of emerging technologies — everything from integrated digital radio to optical interconnects. But some of the chipmaker’s most interesting presentations are being devoted to low-power circuitry.

In a prelude to ISSCC, Intel CTO Justin Rattner held a press briefing last week, outlining a couple of energy-focused technologies they’ve been working on. Specifically, Rattner spoke about the ongoing research with near threshold voltage circuitry designs and a new variable precision floating point unit. While both technologies are still confined to the research labs, Intel looks to be grooming them for their commercial debut.

The idea behind near threshold voltage (NTV), said Rattner, is to design circuit logic or memory that can operate at very low power voltage, thereby saving on energy. As its name implies, NTV works at just a notch above the transistor threshold level, that is, the point at which the device would actually shut off. The advantage to this is that transistors exhibits peak energy efficiencies in this NTV range — on the order of 5 to 10 times more efficient than when operating at “normal” levels.

For a microprocessor, this means you can decrease the voltage significantly, enabling a standard CPU, like a Pentium, to be powered by just a few milliwatts. The downside is that as voltage is squeezed, the clock frequency drops, thereby slowing throughput. But since frequency only decreases linearly with voltage, while power decreases quadratically, throughput per watt should be much better.

Another advantage of NTV circuitry is that it enables a much greater dynamic voltage range. So you can crank the clock up and down more easily, thus providing more control over the balance between performance and energy use. This is ideal for settings where the workload is variable, but where you might want to max out performance for at least some of the applications.

Of course, since maximum energy savings comes from keeping the voltages low, it makes more sense to use more (if slower) NTV processors for a given application, as long as you can parallelize your code sufficiently. Rattner said one potential application area for this technology is exascale hardware, where any loss of individual processor performance is naturally compensated for by the scale of the system.

At the Intel Developer Forum last fall, the company demonstrated an NTV prototype, known as Claremont, which was essentially a Pentium chip overlaid with NTV circuitry. At ISSCC this week, they will show how that design can operate between 3MHz and 915MHz, and is able to achieve up to 4.7 times better energy efficiency than a standard chip. At the most conservative voltage levels, the processor is able to run with a mere 2 milliwatts of power.

The NTV technology can also be applied to memory circuits and graphics logic, something Intel will demonstrate at ISSCC with an NTV-tweaked SIMD engine for processor graphics. In this case, since the graphics logic was designed with NTV in mind (unlike the Claremont Pentium-based prototype), the researchers were able to achieve a 9-fold increase in energy efficiency.

Intel is also wrapping low-power technology into floating point logic, one of the biggest energy hogs on microprocessors. Part of the problem is that floating point units operate at maximum precision (or more typically at two levels — single and double precesion) thus wasting computational bandwidth and storage. As Rattner noted that most programmers opt to use the default 64-bit floating point level, not realizing that in most cases, far less precision is required to get the correct answer.

To address the problem, Intel has invented what they call their “Variable Precision Floating Point Unit. The idea here is to build smarts into the hardware such that the computation is confined to the significant digits rather than the programmer-defined value. Intel’s has built an FP unit prototype that automagically right-sizes the floating point computation by using something called certainty tracking to determine the required accuracy.

The prototype has three floating point gears: 24-bit, 12-bit and 6-bit, and uses the certainty tracking to determine which bit width is appropriate. When less digits are warranted, there are fewer bits to shuffle, so not only is energy saved, but performance is increased as well.

Rattner claimed the design is able to cut energy consumption by as much as 50 percent over a conventional FP design. According to Intel, the prototype, which is clocked at 1.45GHz, is able to deliver between 52 and 162 gigaflops/watt. Intel estimates that if they used NTV techniques on their variable precision floating point design, they could realize an additional 7-fold efficiency gain. (For reference, a 20MW exaflop system needs an energy efficiency of just 50 gigaflops/watt, but that includes the entire microprocessor as well as external memory, I/O chips, network fabric, and so on.)

Rattner said the technology is applicable to GPUs (especially for visual computing and traditional graphics) and HPC-type processor designs. In the case of the latter, the implication is that it could be used for Intel’s Many Integrated Core (MIC) processors, which are essentially big floating point processors in an x86 wrapper. In both the graphics and HPC case, the energy efficiency of the floating point hardware is critical to the value proposition of the associated products.

“We have lots of plans for this technology,” said Rattner, “and you can certainly expect to see it as we move out toward the middle of the decade and beyond, where these energy challenges become even more severe than they are today.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantum Rolls – DOE Dishes $218M; NSF Awards $31M; US Releases ‘Strategic Overview’

September 24, 2018

It was quite a day for U.S. quantum computing. In conjunction with the White House Summit on Advancing American Leadership in Quantum Information Science (QIS) held today, the Department of Energy announced $218 million Read more…

By John Russell

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

Quantum Rolls – DOE Dishes $218M; NSF Awards $31M; US Releases ‘Strategic Overview’

September 24, 2018

It was quite a day for U.S. quantum computing. In conjunction with the White House Summit on Advancing American Leadership in Quantum Information Science (QIS) Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This