Intel Touts New Energy-Efficient Circuitry

By Michael Feldman

February 20, 2012

Intel will be figuring prominently at this week’s IEEE International Solid-State Circuits Conference (ISSCC) in San Francisco, where researchers will be presenting a raft of emerging technologies — everything from integrated digital radio to optical interconnects. But some of the chipmaker’s most interesting presentations are being devoted to low-power circuitry.

In a prelude to ISSCC, Intel CTO Justin Rattner held a press briefing last week, outlining a couple of energy-focused technologies they’ve been working on. Specifically, Rattner spoke about the ongoing research with near threshold voltage circuitry designs and a new variable precision floating point unit. While both technologies are still confined to the research labs, Intel looks to be grooming them for their commercial debut.

The idea behind near threshold voltage (NTV), said Rattner, is to design circuit logic or memory that can operate at very low power voltage, thereby saving on energy. As its name implies, NTV works at just a notch above the transistor threshold level, that is, the point at which the device would actually shut off. The advantage to this is that transistors exhibits peak energy efficiencies in this NTV range — on the order of 5 to 10 times more efficient than when operating at “normal” levels.

For a microprocessor, this means you can decrease the voltage significantly, enabling a standard CPU, like a Pentium, to be powered by just a few milliwatts. The downside is that as voltage is squeezed, the clock frequency drops, thereby slowing throughput. But since frequency only decreases linearly with voltage, while power decreases quadratically, throughput per watt should be much better.

Another advantage of NTV circuitry is that it enables a much greater dynamic voltage range. So you can crank the clock up and down more easily, thus providing more control over the balance between performance and energy use. This is ideal for settings where the workload is variable, but where you might want to max out performance for at least some of the applications.

Of course, since maximum energy savings comes from keeping the voltages low, it makes more sense to use more (if slower) NTV processors for a given application, as long as you can parallelize your code sufficiently. Rattner said one potential application area for this technology is exascale hardware, where any loss of individual processor performance is naturally compensated for by the scale of the system.

At the Intel Developer Forum last fall, the company demonstrated an NTV prototype, known as Claremont, which was essentially a Pentium chip overlaid with NTV circuitry. At ISSCC this week, they will show how that design can operate between 3MHz and 915MHz, and is able to achieve up to 4.7 times better energy efficiency than a standard chip. At the most conservative voltage levels, the processor is able to run with a mere 2 milliwatts of power.

The NTV technology can also be applied to memory circuits and graphics logic, something Intel will demonstrate at ISSCC with an NTV-tweaked SIMD engine for processor graphics. In this case, since the graphics logic was designed with NTV in mind (unlike the Claremont Pentium-based prototype), the researchers were able to achieve a 9-fold increase in energy efficiency.

Intel is also wrapping low-power technology into floating point logic, one of the biggest energy hogs on microprocessors. Part of the problem is that floating point units operate at maximum precision (or more typically at two levels — single and double precesion) thus wasting computational bandwidth and storage. As Rattner noted that most programmers opt to use the default 64-bit floating point level, not realizing that in most cases, far less precision is required to get the correct answer.

To address the problem, Intel has invented what they call their “Variable Precision Floating Point Unit. The idea here is to build smarts into the hardware such that the computation is confined to the significant digits rather than the programmer-defined value. Intel’s has built an FP unit prototype that automagically right-sizes the floating point computation by using something called certainty tracking to determine the required accuracy.

The prototype has three floating point gears: 24-bit, 12-bit and 6-bit, and uses the certainty tracking to determine which bit width is appropriate. When less digits are warranted, there are fewer bits to shuffle, so not only is energy saved, but performance is increased as well.

Rattner claimed the design is able to cut energy consumption by as much as 50 percent over a conventional FP design. According to Intel, the prototype, which is clocked at 1.45GHz, is able to deliver between 52 and 162 gigaflops/watt. Intel estimates that if they used NTV techniques on their variable precision floating point design, they could realize an additional 7-fold efficiency gain. (For reference, a 20MW exaflop system needs an energy efficiency of just 50 gigaflops/watt, but that includes the entire microprocessor as well as external memory, I/O chips, network fabric, and so on.)

Rattner said the technology is applicable to GPUs (especially for visual computing and traditional graphics) and HPC-type processor designs. In the case of the latter, the implication is that it could be used for Intel’s Many Integrated Core (MIC) processors, which are essentially big floating point processors in an x86 wrapper. In both the graphics and HPC case, the energy efficiency of the floating point hardware is critical to the value proposition of the associated products.

“We have lots of plans for this technology,” said Rattner, “and you can certainly expect to see it as we move out toward the middle of the decade and beyond, where these energy challenges become even more severe than they are today.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

U of Illinois, NCSA Launch First US Nanomanufacturing Node

September 14, 2017

The University of Illinois at Urbana-Champaign together with the National Center for Supercomputing Applications (NCSA) have launched the United States's first computational node aimed at the development of nanomanufactu Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PGI Rolls Out Support for Volta 100 in its 2017 Compilers and Tools Suite

September 14, 2017

PGI today announced a fairly lengthy list of new features to version 17.7 of its 2017 Compilers and Tools. The centerpiece of the additions is support for the Tesla Volta 100 GPU, Nvidia’s newest flagship silicon annou Read more…

By John Russell

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This