Intel Touts New Energy-Efficient Circuitry

By Michael Feldman

February 20, 2012

Intel will be figuring prominently at this week’s IEEE International Solid-State Circuits Conference (ISSCC) in San Francisco, where researchers will be presenting a raft of emerging technologies — everything from integrated digital radio to optical interconnects. But some of the chipmaker’s most interesting presentations are being devoted to low-power circuitry.

In a prelude to ISSCC, Intel CTO Justin Rattner held a press briefing last week, outlining a couple of energy-focused technologies they’ve been working on. Specifically, Rattner spoke about the ongoing research with near threshold voltage circuitry designs and a new variable precision floating point unit. While both technologies are still confined to the research labs, Intel looks to be grooming them for their commercial debut.

The idea behind near threshold voltage (NTV), said Rattner, is to design circuit logic or memory that can operate at very low power voltage, thereby saving on energy. As its name implies, NTV works at just a notch above the transistor threshold level, that is, the point at which the device would actually shut off. The advantage to this is that transistors exhibits peak energy efficiencies in this NTV range — on the order of 5 to 10 times more efficient than when operating at “normal” levels.

For a microprocessor, this means you can decrease the voltage significantly, enabling a standard CPU, like a Pentium, to be powered by just a few milliwatts. The downside is that as voltage is squeezed, the clock frequency drops, thereby slowing throughput. But since frequency only decreases linearly with voltage, while power decreases quadratically, throughput per watt should be much better.

Another advantage of NTV circuitry is that it enables a much greater dynamic voltage range. So you can crank the clock up and down more easily, thus providing more control over the balance between performance and energy use. This is ideal for settings where the workload is variable, but where you might want to max out performance for at least some of the applications.

Of course, since maximum energy savings comes from keeping the voltages low, it makes more sense to use more (if slower) NTV processors for a given application, as long as you can parallelize your code sufficiently. Rattner said one potential application area for this technology is exascale hardware, where any loss of individual processor performance is naturally compensated for by the scale of the system.

At the Intel Developer Forum last fall, the company demonstrated an NTV prototype, known as Claremont, which was essentially a Pentium chip overlaid with NTV circuitry. At ISSCC this week, they will show how that design can operate between 3MHz and 915MHz, and is able to achieve up to 4.7 times better energy efficiency than a standard chip. At the most conservative voltage levels, the processor is able to run with a mere 2 milliwatts of power.

The NTV technology can also be applied to memory circuits and graphics logic, something Intel will demonstrate at ISSCC with an NTV-tweaked SIMD engine for processor graphics. In this case, since the graphics logic was designed with NTV in mind (unlike the Claremont Pentium-based prototype), the researchers were able to achieve a 9-fold increase in energy efficiency.

Intel is also wrapping low-power technology into floating point logic, one of the biggest energy hogs on microprocessors. Part of the problem is that floating point units operate at maximum precision (or more typically at two levels — single and double precesion) thus wasting computational bandwidth and storage. As Rattner noted that most programmers opt to use the default 64-bit floating point level, not realizing that in most cases, far less precision is required to get the correct answer.

To address the problem, Intel has invented what they call their “Variable Precision Floating Point Unit. The idea here is to build smarts into the hardware such that the computation is confined to the significant digits rather than the programmer-defined value. Intel’s has built an FP unit prototype that automagically right-sizes the floating point computation by using something called certainty tracking to determine the required accuracy.

The prototype has three floating point gears: 24-bit, 12-bit and 6-bit, and uses the certainty tracking to determine which bit width is appropriate. When less digits are warranted, there are fewer bits to shuffle, so not only is energy saved, but performance is increased as well.

Rattner claimed the design is able to cut energy consumption by as much as 50 percent over a conventional FP design. According to Intel, the prototype, which is clocked at 1.45GHz, is able to deliver between 52 and 162 gigaflops/watt. Intel estimates that if they used NTV techniques on their variable precision floating point design, they could realize an additional 7-fold efficiency gain. (For reference, a 20MW exaflop system needs an energy efficiency of just 50 gigaflops/watt, but that includes the entire microprocessor as well as external memory, I/O chips, network fabric, and so on.)

Rattner said the technology is applicable to GPUs (especially for visual computing and traditional graphics) and HPC-type processor designs. In the case of the latter, the implication is that it could be used for Intel’s Many Integrated Core (MIC) processors, which are essentially big floating point processors in an x86 wrapper. In both the graphics and HPC case, the energy efficiency of the floating point hardware is critical to the value proposition of the associated products.

“We have lots of plans for this technology,” said Rattner, “and you can certainly expect to see it as we move out toward the middle of the decade and beyond, where these energy challenges become even more severe than they are today.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This