Moonshot Highlights HPC’s Longshot

By Nicole Hemsoth

April 11, 2013

For those who followed the news this week about HP’s Moonshot Project, which is their super-compact server pitch for “hyperscale datacenters”, the idea of plugging this into some high performance computing context likely wasn’t first in the thought-queue. However, according to some at the edge of low power computing, including Calexda’s Karl Freund, “the potential says something about the future.”

Without some background, that quote might sound rather vague until one thinks about all the speculation that’s been pumped into ARM-based and low-power x86 architectures. The attention around this has increased now that we’re looking at a 64-bit and double-precision-ready reality around the bend within the next couple of years.

While Moonshot might be wooing the mobile and hosting camp, there is something more compelling here for HPC–at least in the coming years. This concept presents high-density, low-power servers with the ability to swap in accelerators, DSPs, GPUs, FPGAs to create an efficient heterogeneous platform that is tailored around specific workloads.

Add to that an integrated cluster fabric and embedded low latency switches and this should strike the HPC crowd as a “blade on steroids” where storage and other workload-specific needs can (eventually) be snapped in. Again, it’s still down the road for the needs of high performance computing, but we did explore the possibilities with a few folks this week.

During a conversation about how HP and others who take this type of swing at big datacenters might be able to strong-ARM their way through the gilded HPC gates, Freund cited some heavy-hitters taking an honest shine to lightweight approaches. He rattled off a long list of national labs, from Sandia to Los Alamos, Argonne, Oak Ridge, and others who are actively exploring the potential of ARM and how it might help them tackle exascale-class problems efficiently. He was referring to his company’s own ARM-based cartridges, which HP will offer as an option (although they were a first choice during the initial phases of Moonshot) to the core Intel Atom S1200 “Centerton” in addition to other offerings from ARM vendors.

While the labs might be turning a theoretical eye to the low power field, at this point it’s more on the level of playing with a few boxes to get a sense of scale and capability. So far, they (and some in the life sciences and oil and gas industries who aren’t concerned with striking double-precision gold) are pleased, but there is still a great deal of development to be done, including the (likely late) 2014 release of 64-bit ARM and then the critical tooling required to make it all function.

But it’s not all a power/efficiency play for the labs and those thinking about new server approaches, says Freund—it’s just as much a matter of flexibility and being able to build out boxes based on specific elements that are wrapped around specific workload needs. The labs and others at such scale have been “told by Intel that you get what everyone else gets” unless you’re willing to fork over a bunch of bucks to have them cobble together a specialized chip. This just isn’t the way systems are going to be built if we look ahead, Freund argues.

What HP showed off this week in the form of the very hopeful-sounding “Project Moonshot” is a glimpse into that application-centric future. Is any of it ready for HPC primetime? Of course not—in fact, in their current form sporting Intel Atom processors, they’re really only good for cloud datacenters munching pretty common tasks in an efficient but unimpressive (performance-wise) way. But there is a little twinkling there that’s bright enough to lull the forward-looking on the supercomputing side.

That sparkle is in flexibility, Freund argues—it’s a glimmer that is hard for the labs to ignore. And when the light hits Moonshot just right, this crew is seeing the promise of stitching all sorts of pretties to the naked boxes; from GPUs on the same die, to FPGAs finding their way in, to 60 gigabit fabric switches, sprinklings of DSPs (ala Texas Instruments) and additional offload engines, at least from Freund’s vantage point.

As HP noted when they slung out Moonshot this week, “There is a solid return for investing in finding an optimal balance of density, costs and expenses for each workload class. Given the rapid rate of workload and application evolution, finding optimal performance pints will be a continuous process for at least the next few years; it demands flexible hardware and software infrastructure.”

One could argue even further that Freund’s simple statement about possibility is far deeper than anything else he could have said in more words. And the synergies don’t end there, nor do they really even begin with HP for that matter either.

What HP has done is thrown out a holistic view of how the future could, when ideally imagined, work, for the big boys of HPC and the enterprise peasants alike. Even if for now the messaging is trumpeted to the cloud datacenters serving up vanilla apps, this unified vision resonates. They plan on “enabling a variety of partner silicon and component vendors to accelerate hypersale workloads for customers. This includes the lowest power CPUs and adds to it APUs, GPUs, DSPs, and FPGAs at scales those vendors would not be able to access on their own.” This is music to vendor ears, but on the receiving end, they note that “HP’s customers will benefit via broader access to innovative accelerators at a faster pace than HP achieve on its own.” They note (quite humbly despite the grandiosity of the project name) that their “success in bootstrapping and sustaining their Pathfinder Innovation Ecosystem will determine their future in the hyperscale infrastructure market.”

He imagines that at ISC in Leipzig and other shows with an HPC-heavy cast, HP will try to shine its Moonshot diamond in such a way that there’s a visible “big data” glint. The issue here is, HPC in this case isn’t really the same thing as big data as it fits in the Moonshot box. One of the biggest weaknesses of an architecture like the one they’ve crammed into the teensy space is that it rather sucks at floating point performance. And that’s kind of, well, you know , like really, really important. Still, for the I/O and integer-intensive stuff, which also has a place in the hallowed halls of HPC, there is a story angle. Again, that tale will have to play out following some maturing post 64-bit release.

Even after that release and the addition of double-precision capability, there’s something of a chicken and egg problem. Since no one is investing in the tools and software side until 64-bit double-precision emerges (no money, no develop-y), even the experiments at this early stage have their limits—and the development needed after the basics are in place will add even more time to the process. It will be slow going, but it could be all worth the wait if an efficient, flexible and fine-tuned server approach emerges that pulls the exascale dream a little closer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

  • arrow
  • Click Here for More Headlines
  • arrow
Share This