Hurricane Force Supercomputing: Petascale Simulations of Sandy

By Peter Johnsen, Mark Straka, Melvyn Shapiro, Alan Norton & Tom Galerneau

November 14, 2013

The devastation incurred by the landfall of Hurricane Sandy on the northeast coast of the United States just over one year ago exemplifies the need for further advances in accuracy and reliability in numerical weather prediction.  High resolution numerical weather simulations carried out on hundreds of thousands of processors on the largest supercomputers are providing these very insights.

The National Center for Atmospheric Research (NCAR) Weather Research and Forecasting (WRF) model has been employed on the largest yet storm prediction model using real data of over 4 billion points to simulate the landfall of Hurricane Sandy. Using an unprecedented 13,680 nodes (437,760 cores) of the Cray XE6 Blue Waters supercomputer at the National Center for Supercomputing Applications  at the University of Illinois, the team of Peter Johnsen from Cray, Inc., Mark Straka from NCSA, and Mel Shapiro, Alan Norton, and Tom Galarneau from NCAR achieved an unprecedented level of performance for any weather model.  The model used approximately 4 billion grid points at an extremely fine resolution of 500 meters.  Forecast data was written and analyzed by the NCAR team members using the NCAR VAPOR visualization suite.

The landfall of Hurricane Sandy along the New Jersey shoreline late on October 30th, 2012 produced a catastrophic storm surge extending from New Jersey to Rhode Island. The research highlighted here demonstrates the capability of the NCSA/Cray Blue Waters supercomputer to conduct a cloud-resolving WRF-ARW simulation of an intense cyclone over a relatively large domain at a very-fine spatial resolution.

The Blue Waters system is a Cray XE/XK hybrid machine composed of 362,240 AMD 6276 “Interlagos” processors and 4224 NVIDIA GK110 Kepler accelerators all connected by the Cray Gemini 3-D (24^3) torus interconnect. It provides sustained performance of 1 petaflop on a range of real-world science and engineering applications. Our motivation was to reduce time to solution as much as was under our control without major source code restructuring. The WRF version 3.3.1 source code was modified from the public distribution chiefly with concerns for reducing the I/O burden per MPI task and limiting the necessary information to a single MPI rank.

Topology Considerations Are Vital

Domain configuration and process layout using MPI rank ordering features of the Cray XE6 job scheduler (ALPS) form a cornerstone in efficiently using the XE6 3D torus interconnect and allowing WRF to scale this successfully.  We used the Cray grid_order utility to generate improved placement of the ranks for the primary communication pattern in the WRF solver, which is nearest neighbor halo exchanges. Reducing the number of neighbors communicating off-node is the primary goal. Using an alternate placement allows us to get 3 communication partners for most MPI ranks on the same node, instead of only 2, as would be with the default placement.  At very high scales, this strategy improves overall WRF performance by 18% or more.

We found the most effective way to run WRF on the AMD Bulldozer core-modules was to exploit WRF’s “hybrid” MPI/OpenMP structure, utilizing 2 OpenMP threads per MPI rank.  This puts 16 MPI ranks on each XE6 node.

The optimized placement we’ve employed also has the benefit of sending smaller east-west direction exchanges off-node and keeping as many larger north-south messages on-node as possible, resulting in 75% fewer bytes being sent over the network. We verified empirically the long-known tactic of decomposing WRF’s domain with many fewer MPI ranks in the X direction than the Y, as this leads to longer vectors on the inner compute loops.

Our simulations yielded an average Tflop count of 32.454 Tflops per second, per simulation time step. Parallel efficiency was still above 60% even on 13,680 XE6 nodes. Over 12 million off-node halo exchange messages totaling 280 GB were processed every WRF time step.

I/O Considerations at Scale

On the Blue Waters system, the Lustre file system was used for all file activity.

Two techniques were used to handle the large I/O requirements for the Sandy simulation –

  1. Parallel NetCDF (PnetCDF), jointly developed by Northwestern University and Argonne National Laboratory, was used where practical.  The MPICH library from Cray has a tuned MPI-IO implementation that aligns parallel I/O with the Lustre file system.  This format is required when post-processing tools are used.
  2. WRF has a multi-file option where each subdomain, or MPI rank, reads and writes unique files.  This was used for very large restart files and some of the pre-processing steps.  The Blue Waters Lustre file system was able to open and read 145,920 restart files in 18 seconds for a 4560 node case.

Additionally, use of WRF’s auxiliary history output options to select only the output fields of greatest interest, thus reducing the volume of output considerably, was of great utility in our work.

graph_1

Scalability of Hurricane Sandy run.  Sustained performance in Tflops/second (y-axis, left) and parallel efficiency over base run on 8,192 cores (y-axis, right) are shown.

Forecast Analysis and Validation

The following figures show a comparison of the maximum radar reflectivity (a surrogate for precipitation) from the simulations at 3-km and 500-m horizontal resolution. In both simulations, a broad region of heavy precipitation is located on the west and southwest side of Sandy, and is organized in a region where warm moist northeasterly flow intersects a northwesterly surge of cold continental air (not shown).

graph_2

Comparison of (a) 3-km and (b) 500-m horizontal resolution ARW simulations of maximum radar reflectivity (shaded according to the color bar in dBZ) verifying at 1500 UTC 29 October 2012.

The 500-m simulation is superior to that at 3-km because it shows the fine-scale linear structure of the convective precipitation bands, consistent with the available observations (not shown). The next images show a zoomed-in view of maximum radar reflectivity and 300-m wind speed within the inner-core of Sandy at 1800 UTC 29 October 2012. This zoomed perspective allows for examination of the full detail of the simulation, noting that the resolution of the simulation (7000×7000 grid points) exceeds the resolution of standard computer monitors by a factor of seven. Here we note the utility of ultra-advanced computational capability to represent the full range of scales spanning the storm-scale circulations down to fine-scale turbulent motions and individual cloud and precipitation systems.

graph_3

500-m ARW simulation of (a) maximum radar reflectivity (shaded according to the color bar in dBZ) and (b) 300-m wind speed (shaded according to the color bar in m s−1) verifying at 1800 UTC 29 October 2012.

The model accuracy for predicting such key output fields as rainfall, pressures, wind speeds, and storm track was graphically validated against actual atmospheric measurements from the storm using NCAR’s VAPOR software suite. Given recent advances in accessing and displaying large volume geophysical datasets as exemplified by the VAPOR software, it is now possible to view the full temporal evolution of numerical simulations and predictions of atmospheric and other geophysical systems. Examples of the advanced visualizations of Hurricane Sandy with VAPOR can be found at:

https://www.vapor.ucar.edu/sites/default/files/movies/sandy_SC13_web_0.mp4

The results of this research will be presented at the Supercomputing conference this month in November.  See the conference agenda here:

http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap255

Cutting Edge Forecasting

NOAA has initiated the ten-year Hurricane Forecast Improvement Project (HFIP), which is evaluating a variety of modeling approaches, exploring the feasibility of real-time fine-scale hurricane projections. Its enhanced Hurricane WRF model (HWRF) is already being run in real time at a somewhat smaller scale. In a collaborative effort involving NOAA’s Hurricane Research Division and Environmental Modeling Center, Cray , NCSA, and NCAR, this code is already being run on Blue Waters to conduct performance studies at scale with grid nesting never before possible. Results are already promising that coming years’ hurricane seasons will be able to incorporate much finer detailed real-time forecasts generated by these simulations. The team is also exploring high resolution simulations with the Office of Naval Research ONR using the COAMPS model.

Research Team:

Peter Johnsen is a performance engineer and meteorologist with Cray, Inc.  Peter’s expertise is optimizing environmental applications on HPC systems.

Mark Straka specializes in performance analysis of scientific applications on the Blue Waters system at the National Center for Supercomputing Applications.

Melvyn Shapiro, Alan Norton, and Thomas Galarneau are research meteorologists with the National Center for Atmospheric Research and are studying many weather phenomena, including Hurricane Sandy’s unique nature.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire