Livermore Computing, Reddit Asked Them Anything

By Tiffany Trader

August 10, 2017

In case you missed it, the staff of Livermore Computing (LC) at the Lawrence Livermore National Laboratory (LLNL) recently fielded some questions from the internet, part of Reddit’s Science Ask Me Anything (AMA) series. Livermore is home to Sequoia, currently the fifth fastest machine in the world, benchmarked at 17 Linpack petaflops. The IBM BlueGene/Q machine enables the National Nuclear Security Administration (NNSA) to fulfill its stockpile stewardship mission through simulation in lieu of underground testing.

This fall Livermore expects to take delivery of Sierra, the pre-exascale supercomputer that is part of the tri-lab CORAL collaboration. Built by IBM and Nvidia, Sequoia will offer about six times more computing power than Sequoia with a planned peak computational capacity of ~150 petaflops. Like Sequoia, Sierra will serve the NNSA’s program to ensure the safety, security, and effectiveness of the nation’s nuclear deterrent without testing.

Below we round up a few highlights from the AMA — so read on to find out what Livermore Computing representatives think about AI, how they are preparing for the coming Sierra system and the benefits of being in wine country. Plus, they answer the all-important question: how much money could Sequoia make mining bitcoins (hypothetically)?


What is one thing about your work that the general public pushes back against and what one thing would you like them to understand?


Sometimes people ask us why we need ever more powerful supercomputers. No matter how much computing power we have provided, our national missions create a need for more complex simulations and thus a need for more powerful supercomputers.

Find more information on the nation’s exascale computing project see To see examples of application areas requiring exascale computing, check out the ECP Research Areas.


Do the future prospects of Artificial Intelligence ring a positive or negative tune, and why?


It depends on how AI is used and the intentions of the user. With the increasing complexity of programs (multiple millions of lines of code), we might reach a point where further development of some applications require help from an AI agent. One useful area to explore is monitoring the condition of supercomputers and predicting failures. We will always need more intelligence, both human and artificial. Several LLNL projects are investigating AI use in HPC. One effort leverages the TrueNorth brain-inspired supercomputer, you can read more at


Is alcohol bad for computing? Or does it hurt your Livermore?


Alcohol is bad for computers, especially the non-liquid cooled ones. Livermore is known for its wine. Alcohol is good for computer scientists. See the following for reference:


What’s the silliest things that can be done on supercomputers?


We often need to test the heat tolerance of supercomputers, so one of our engineers was asked to write a computation to generate heat. Not do otherwise productive work, just get the computer as hot as we possibly could.


This is a kinda dumb question but how do super computers work


No such thing as a dumb question, only an opportunity to learn! Supercomputers or HPC, work by distributing a task across numerous computers. They benefit by high speed communications between these computers working on the parts of the task. They also leverage message passing between the processes on the various computers to coordinate working on the overall task. This high speed, coordinated, distributed computation across numerous computers is what makes a supercomputer work.


How excited are you for Sierra?


We are extremely excited for Sierra!

We have people developing tools, programming models, porting millions of lines of code, and just generally trying new and interesting things. A lot of them open source. We have sysadmins getting familiar with new hardware, our networking folks are looking at how to make networks keep up with the incredible computational speedup. We also have several teams focused on helping applications developers prepare for running efficiently on Sierra.

Power efficiency is extremely important. We are proud to be active contributors, users, and supporters of the open source community. For info on our software go to


How do you start working in your field? What degrees or certifications are you looking for in perspective candidates?


Well… we have a geologist who is a Linux kernel hacker!

Seriously, we have a range of degrees represented across Livermore Computing. Some of us have no degree at all. We have employees with associates degrees, bachelors, masters, and PhD’s. Some are straight out of school, others have been in HPC since before the internet existed.

Fields range from Computer Science and Computer Engineering, to Mathematics and Statistics degrees. We also staff who come from the sciences directly, including those from physical and life sciences such as Computational Biology, Physics, and others!

Look for employment opportunities here: Apply for an internship: Here’s the page for this summer’s HPC Cluster Engineer Academy:


This is where my uncle works! Say hi to Greg T for me!!!

Now for my question: -Given the rise of cryptocurrency and it’s dependence on computing power to solve blocks and earn currency. Are there any plans to use existing supercomputing power to mine for cryptocurrency?


Greg says hi!

DOE supercomputers are government resources for national missions. Bitcoin mining would be a misuse of government funds.

In general, though, it’s fun to think about how you could use lots of supercomputing power for Bitcoin mining, but even our machines aren’t big enough to break the system. The number of machines mining bitcoin worldwide has been estimated to have a hash rate many thousands of times faster than all the Top 500 machines combined, so we wouldn’t be able to decide to break the blockchain by ourselves ( Also, mining bitcoins requires a lot of power, and it’s been estimated that even if you used our Sequoia system to mine bitcoin, you’d only make $40/day ( The amount we pay every day to power the machine is a lot more than that. So even if it were legal to mine bitcoins with DOE supercomputers, there’d be no point. The most successful machines for mining bitcoins use low-power custom ASICs built specifically for hashing, and they’ll be more cost-effective than a general purpose CPU or GPU system any day.


Do you have to get every response reviewed and approved before you post it?


This answer is currently under review… Yes.


Read the entire AMA here.

The Livermore Computing group hopes to do another AMA in the future, so start thinking of your questions.

Livermore Computing staff in front of Sequoia
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This