Livermore Computing, Reddit Asked Them Anything

By Tiffany Trader

August 10, 2017

In case you missed it, the staff of Livermore Computing (LC) at the Lawrence Livermore National Laboratory (LLNL) recently fielded some questions from the internet, part of Reddit’s Science Ask Me Anything (AMA) series. Livermore is home to Sequoia, currently the fifth fastest machine in the world, benchmarked at 17 Linpack petaflops. The IBM BlueGene/Q machine enables the National Nuclear Security Administration (NNSA) to fulfill its stockpile stewardship mission through simulation in lieu of underground testing.

This fall Livermore expects to take delivery of Sierra, the pre-exascale supercomputer that is part of the tri-lab CORAL collaboration. Built by IBM and Nvidia, Sequoia will offer about six times more computing power than Sequoia with a planned peak computational capacity of ~150 petaflops. Like Sequoia, Sierra will serve the NNSA’s program to ensure the safety, security, and effectiveness of the nation’s nuclear deterrent without testing.

Below we round up a few highlights from the AMA — so read on to find out what Livermore Computing representatives think about AI, how they are preparing for the coming Sierra system and the benefits of being in wine country. Plus, they answer the all-important question: how much money could Sequoia make mining bitcoins (hypothetically)?

Blankrubber:

What is one thing about your work that the general public pushes back against and what one thing would you like them to understand?

Livermore_Computing:

Sometimes people ask us why we need ever more powerful supercomputers. No matter how much computing power we have provided, our national missions create a need for more complex simulations and thus a need for more powerful supercomputers.

Find more information on the nation’s exascale computing project see https://exascaleproject.org/. To see examples of application areas requiring exascale computing, check out the ECP Research Areas.

MagicianDolphin:

Do the future prospects of Artificial Intelligence ring a positive or negative tune, and why?

Livermore_Computing:

It depends on how AI is used and the intentions of the user. With the increasing complexity of programs (multiple millions of lines of code), we might reach a point where further development of some applications require help from an AI agent. One useful area to explore is monitoring the condition of supercomputers and predicting failures. We will always need more intelligence, both human and artificial. Several LLNL projects are investigating AI use in HPC. One effort leverages the TrueNorth brain-inspired supercomputer, you can read more at https://www.llnl.gov/news/lawrence-livermore-and-ibm-collaborate-build-new-brain-inspired-supercomputer.

Magic147:

Is alcohol bad for computing? Or does it hurt your Livermore?

Livermore_Computing:

Alcohol is bad for computers, especially the non-liquid cooled ones. Livermore is known for its wine. Alcohol is good for computer scientists. See the following for reference: https://xkcd.com/323/

tupe12:

What’s the silliest things that can be done on supercomputers?

Livermore_Computing:

We often need to test the heat tolerance of supercomputers, so one of our engineers was asked to write a computation to generate heat. Not do otherwise productive work, just get the computer as hot as we possibly could.

mr_trumpandhillary:

This is a kinda dumb question but how do super computers work

Livermore_Computing:

No such thing as a dumb question, only an opportunity to learn! Supercomputers or HPC, work by distributing a task across numerous computers. They benefit by high speed communications between these computers working on the parts of the task. They also leverage message passing between the processes on the various computers to coordinate working on the overall task. This high speed, coordinated, distributed computation across numerous computers is what makes a supercomputer work.

itisjustjeff:

How excited are you for Sierra?

Livermore_Computing:

We are extremely excited for Sierra!

We have people developing tools, programming models, porting millions of lines of code, and just generally trying new and interesting things. A lot of them open source. We have sysadmins getting familiar with new hardware, our networking folks are looking at how to make networks keep up with the incredible computational speedup. We also have several teams focused on helping applications developers prepare for running efficiently on Sierra.

Power efficiency is extremely important. We are proud to be active contributors, users, and supporters of the open source community. For info on our software go to https://software.llnl.gov/.

mindl0rd:

How do you start working in your field? What degrees or certifications are you looking for in perspective candidates?

Livermore_Computing:

Well… we have a geologist who is a Linux kernel hacker!

Seriously, we have a range of degrees represented across Livermore Computing. Some of us have no degree at all. We have employees with associates degrees, bachelors, masters, and PhD’s. Some are straight out of school, others have been in HPC since before the internet existed.

Fields range from Computer Science and Computer Engineering, to Mathematics and Statistics degrees. We also staff who come from the sciences directly, including those from physical and life sciences such as Computational Biology, Physics, and others!

Look for employment opportunities here: http://careers-ext.llnl.gov/ Apply for an internship: http://students.llnl.gov/ Here’s the page for this summer’s HPC Cluster Engineer Academy:
https://computation.llnl.gov/hpc-cluster-engineer-academy

Bull3t_Th3ory:

This is where my uncle works! Say hi to Greg T for me!!!

Now for my question: -Given the rise of cryptocurrency and it’s dependence on computing power to solve blocks and earn currency. Are there any plans to use existing supercomputing power to mine for cryptocurrency?

Livermore_Computing:

Greg says hi!

DOE supercomputers are government resources for national missions. Bitcoin mining would be a misuse of government funds.

In general, though, it’s fun to think about how you could use lots of supercomputing power for Bitcoin mining, but even our machines aren’t big enough to break the system. The number of machines mining bitcoin worldwide has been estimated to have a hash rate many thousands of times faster than all the Top 500 machines combined, so we wouldn’t be able to decide to break the blockchain by ourselves (https://www.forbes.com/sites/peterdetwiler/2016/07/21/mining-bitcoins-is-a-surprisingly-energy-intensive-endeavor/2/#6f0cae8a30f3). Also, mining bitcoins requires a lot of power, and it’s been estimated that even if you used our Sequoia system to mine bitcoin, you’d only make $40/day (https://bitcoinmagazine.com/articles/government-bans-professor-mining-bitcoin-supercomputer-1402002877/). The amount we pay every day to power the machine is a lot more than that. So even if it were legal to mine bitcoins with DOE supercomputers, there’d be no point. The most successful machines for mining bitcoins use low-power custom ASICs built specifically for hashing, and they’ll be more cost-effective than a general purpose CPU or GPU system any day.

nbo10:

Do you have to get every response reviewed and approved before you post it?

Livermore_Computing:

This answer is currently under review… Yes.

~

Read the entire AMA here.

The Livermore Computing group hopes to do another AMA in the future, so start thinking of your questions.

Livermore Computing staff in front of Sequoia
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This