IBM Breaks Ground for Complex Quantum Chemistry

By John Russell

September 14, 2017

IBM yesterday reported in Nature Communications the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules.

“Instead of forcing previously known classical computing methods onto quantum hardware, the scientists reversed the approach by building an algorithm suited to the capability of the current available quantum devices. This allows for extracting the maximal quantum computational power to solve problems that grow exponentially more difficult for classical computers,” according to the IBM announcement.

Quantum chemistry has long been regarded as of the great promises of quantum computing. A good example is nitrogen fixation – essentially making ammonia – from the air. Bacteria do it effortlessly. Industry still does it with a hundred-year-old Haber process, which is used mostly in fertilizer production today.

Today, simulating even small molecules with the needed accuracy to predict energy states and reactivity is hard. IBM performed the numerical simulation on H2, LiH, and BeH2. “While this model of BeH2 can be simulated on a classical computer, IBM’s approach has the potential to scale towards investigating larger molecules that would traditionally be seen to be beyond the scope of classical computational methods, as more powerful quantum systems get built,” noted IBM.

Here’s a good statement of the problem and IBM’s solution taken from the paper (Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets):

“Finding exact solutions to such problems numerically has a computational cost that scales exponentially with the size of the system, and Monte Carlo methods are unsuitable owing to the fermionic sign problem. These limitations of classical computational methods have made solving even few-atom electronic-structure problems interesting for implementation using medium-sized quantum computers. Yet experimental implementations have so far been restricted to molecules involving only hydrogen and helium.

“Here we demonstrate the experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms, determining the ground-state energy for molecules of increasing size, up to BeH2. We achieve this result by using a variational quantum eigenvalue solver (eigensolver) with efficiently prepared trial states that are tailored specifically to the interactions that are available in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine.”

There are, of course many approaches to quantum computing and new kinds of qubits seem to appear weekly. IBM, Microsoft, and Google are focused on so-called universal quantum computers able to do pretty much anything classical computers can do. D-Wave builds quantum annealing computers best suited for certain optimization problems, some of which include quantum chemistry problems.

“IBM, Google and a number of academic labs have chosen relatively mature hardware, such as loops of superconducting wire, to make quantum bits (qubits). These are the building blocks of a quantum computer: they power its speedy calculations thanks to their ability to be in a mixture (or superposition) of ‘on’ and ‘off’ states at the same time.”[i] Microsoft is pursing one of the more exotic approaches – a topological qubit, the Majorana, a particle whose existence has been debated but for which evidence has been rapidly accumulating recently.

As described by IBM’s work, the fundamental goal in electronic-structure problems is to solve for the ground-state energy of many-body interacting fermionic Hamiltonians. Solving this problem on a quantum computer relies on a mapping between fermionic and qubit operators, which restates the problem as a specific instance of a local Hamiltonian problem on a set of qubits.

“Here we introduce and implement a hardware-efficient ansatz preparation for a VQE (variational quantum eigensolvers), whereby trial states are parameterized by quantum gates that are tailored to the physical device that is available. We show numerically the viability of such trial states for small electronic-structure problems and use a superconducting quantum processor to perform optimizations of the molecular energies of H2, LiH and BeH2, and extend its application to a Heisenberg antiferromagnetic model in an external magnetic field,” write the authors, all from IBM Research.[ii]

Below is diagram and caption of the recent work taken from the paper. (inset after)

 

Figure 1 | Quantum chemistry on a superconducting quantum processor. Solving electronic-structure problems on a quantum computer relies on mappings between fermionic and qubit operators. a, Parity mapping of eight spin orbitals (drawn in blue and red, not to scale) onto eight qubits, which are then reduced to six qubits owing to fermionic
spin and parity symmetries. The length of the bars indicate the parity of the spin orbitals that are encoded in each qubit. b, False-coloured optical micrograph of the superconducting quantum processor with seven transmon qubits. These qubits are coupled via two coplanar waveguide resonators (violet) and have individual coplanar waveguide resonators for control and read-out. c, Hardware-efficient quantum circuit for trial- state preparation and energy estimation, shown here for six qubits. For each iteration k, the circuit is composed of a sequence of interleaved single-qubit rotations Uq,d(θk) and entangling unitary operations UENT that entangle all of the qubits in the circuit. A final set of post-rotations
(I, X−p/2 or Yp/2) before the qubits are read out is used to measure the expectation values of the individual Pauli terms in the Hamiltonian and to estimate the energy of the trial state. d, An example of the pulse sequence for the preparation of a six-qubit trial state, in which UENT is implemented as a sequence of two-qubit cross-resonance gates.

IBM has certainly been an industry leader in providing access to quantum computing, most visibly through its IBM Q initiative  launched a year ago with a robust five-qubit quantum computer on the cloud for anyone to freely access; it has recently upgraded to a 16-qubit processor available for beta access.

To help showcase how quantum computers are adept to simulating molecules, developers and users of the IBM Q experience are now able to access a quantum chemistry Jupyter Notebook. The open source quantum chemistry Jupyter Notebook (available through the open access QISKit github repo) allows users to explore a method of ground state energy simulation for small molecules such as hydrogen and lithium hydride.

Quoted in the IBM announcement of the most recent work, Alán Aspuru-Guzik, professor of chemistry and chemical biology at Harvard University characterized IBM’s recent work as impressive, noting “When quantum computers are able to carry out chemical simulations in a numerically exact way, most likely when we have error correction in place and a large number of logical qubits, the field will be disrupted. Exact predictions will result in molecular design that does not need calibration with experiment. This may lead to the discovery of new small-molecule drugs or organic materials.”

Link to IBM paper: http://www.nature.com/nature/journal/v549/n7671/full/nature23879.html?foxtrotcallback=true

[i] http://www.nature.com/news/inside-microsoft-s-quest-for-a-topological-quantum-computer-1.20774

[ii] Abhinav Kandala, Antonio Mezzacapo, Kristan temme, Maika takita, Markus Brink, Jerry M. Chow1 & Jay M. Gambetta

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire