Exascale for the Rest of Us: Exaflops Systems Capable for Industry

By Doug Black

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enterprise IT, on one side, and traditional HPC at supercomputing centers, on the other.

When these three groups rub against each other, conflict is natural – conflict in outlook, requirements, aspirations and methods. Such is the challenge for the U.S. Department of Energy’s Exascale Computing Project (ECP) as it guides the country’s development of exascale (a billion billion calculations per second) computing. The next frontier in supercomputing, exascale also is being pursued in China, Japan, Russia and the EU, it’s generally regarded as critical to national security, scientific discovery and industrial, economic competitiveness.

The American effort emphasizes “capable exascale,” which the ECP defines as more than a system that can attain an exascale benchmark: “ECP’s work encompasses the development of an entire exascale ecosystem: applications, system software, hardware technologies and architectures, along with critical workforce development.” In short: usability and broad applicability, including adoptability by industrial companies.

That’s where the ECP’s Industry Council (IC) comes in. An external advisory group comprised of managers from 17 major corporations (Lily, Westinghouse, Dreamworks, Exxon Mobil, etc.), it serves as a voice on supercomputing issues that industrial companies care about.

We recently talked with IC Chair Dave Kepczynski, CIO, GE Global Research, General Electric, who discussed the IC’s mission within the ECP’s overall development work.  Kepczynski freely states that GE – and many other industrial organizations with insatiable compute-intensive requirements – can’t wait to get their hands on an exascale system, as long as it’s a system designed with compassion for their technical skills, existing applications and workload environments.

Following are excerpted remarks from Kepczynski in which he talks about the exascale technology he and his IC colleagues envision. As does the ECP, he emphasized that the U.S. exascale effort has a broader, more inclusive development perspective than previous government-funded supercomputing projects.


Some of the big projects of the past have been more focused around the hardware technology and programming instruments. What’s evident now is there is an entire key element around product management, around software and integrations and testing…

David Kepczynski of GE

Two things are at an intersection with the Industry Council, and they’re hardware- and software-related. We want to have a reasonable level of standardized hardware that really drives reusability of the technology architecture. That, I think, is an important piece. It’s already being demonstrated by the ECP because of the number of labs that will then re-use the blueprinted hardware and technology architecture; and not in all cases is it coming from the same hardware vendors or the same hardware make-up. So that’s a good way to demonstrate it.

The other key piece, for us, is industry-friendly software. We’re looking for reusable integration applications and microservices. We spent our last face-to-face Council meeting just on that side of the equation…. It’s more than just the hardware technology, we all recognize that now, we really need to get the entire integrated technology stack ecosystem right… We had a panel of our ISVs (Ansys, Cascade Technology, Altair) that are part of the Council to talk specifically about what everyone is doing next, so we can concentrate effort around reusable integrations, applications and microservices.

So it’s not hardware-led, it’s both hardware and software. Part of the discussion we had is that in the past the hardware kind of led and software lagged. The go-forward plan (hardware alongside software) is more than just an attempt, it’s part of the ECP. That’s why there are ISVs as part of the IC… That’s why these discussions are important for all of us. The sooner we create industry-friendly software the sooner we can shorten…speed to implementation and integration of exascale.

Refactoring Applications for Exascale

We have software and applications internal to the national labs, we have our ISVs, and we have our own internal software and applications. At GE, we have our own internal proprietary (software) that we use on aviation, for purposes of combustion and aero development, and in fact we have even used one or several of them in conjunction with U.S. government DoE national labs’ compute environments.

So all three of those are important here for us to deliver capable exascale. We need to recognize the amount of software development (and code refactoring) that will need to go into taking advantage of this next generation of parallel processing capability – taking advantage of the new technology architecture with interwoven CPUs with GPUs.

We’ve begun work on prioritized software and applications…, there is some early development that is becoming available on pre-exascale technology, and those are opportunities for ISVs and industry partners to begin testing of refactored (code). There are some early templates of the technology architecture, and so you don’t need to be a large company to begin to understand if or when or how you can take advantage of exascale.

Exascale in GE’s Future?

I would say yes, (exascale is in GE’s future). What we have internal to our company, which isn’t much different from many industrial companies, is you have a mix of supercomputing environments… Exascale is definitely on our future roadmap. We don’t want to have this big lag that we’ve had in the past (between HPC technology used in supercomputing centers and HPC used in industry)…. We want the same in order to differentiate and continue our U.S. competitiveness. We want the next levels of technical velocity, improved cycles, higher (compute) performance, higher fidelity at lower cost.

It almost gets you to ask yourself: Over time, with compute capabilities continuing to grow, most companies have already begun…their transition between less physical tests and more computational, experimental methods, heightened leveraging of advanced technologies and HPC.

There used to be many physical tests at very high cost. That doesn’t mean we’re eliminating physical tests. It means we can significantly reduce the number and significantly improve the expected results of our physical tests….

Most industrials today, whether U.S. or global, using computationally advanced applications on the supercomputing side of the equation, are really working on components and subsystems. The question is what’s the limitation? The limitation is the level of computing (available). The crux of the matter is we want more capable compute to leverage.

Today we do a lot of performance analysis and optimization at these part/subsystem levels. But really, we want to do system and environmental computational and virtual validation work at a multi-disciplinary, multi-system level. And that’s where the next level of computational capabilities is going to be able to take us as an industry.


A version of this article first appeared on our sister site EnterpriseTech.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire