Preparing for the Arrival of Aurora with CPU-based Interactive Visualization

By Rob Farber

October 30, 2018

In preparation for the arrival of Aurora, slated to be the first U.S. exascale supercomputer, Argonne National Laboratory is actively working to make techniques such as in situ and in transit visualization and analysis available to their user community plus the HPC community at large. The result is a DOE multi-institutional effort that includes Argonne, private companies, and other national labs to leverage SENSEI, a portable framework that enables in situ, in transit, and traditional batch visualization workflows that can use either ray tracing or triangle-based rendering back ends, for analysis and scalable interactive rendering.

In situ visualization has been identified as a key technology to enable science at the exascale[i]. In situ visualization means that the visualization occurs on the same nodes that perform the computation. In transit visualization is not as directly coupled to the simulation, and can help load-balance by using more nodes to support computationally expensive simulations like LAMMPs. Unlike in situ, in transit does incur some overhead when moving data across the communications fabric between nodes. Both methods keep the data in memory and avoid writing to storage.

Joseph Insley (visualization and analysis team lead at the Argonne Leadership Computing Facility) points out, “With SENSEI, users can utilize in situ and in transit techniques to address the widening gap between Flop/s and I/O capacity which is making full-resolution, I/O-intensive post hoc analysis prohibitively expensive, if not impossible.” Silvio Rizzi (assistant computer scientist, Argonne) highlights portability when he states, “the idea behind SENSEI is to write once and use anywhere.”

The Argonne team led by Nicola Ferrier as PI has adapted the popular LAMMPS (e.g. the Large-scale Atomic/Molecular Massively Parallel Simulator) code to demonstrate the benefits of the SENSEI framework. The integration of SENSEI made use of existing mechanisms in LAMMPS for coupling with other simulation codes.[ii]

Understanding the choice of LAMMPS as a SENSEI testbed

Paul Navrátil, director of Visualization at the Texas Advanced Computing Center (TACC), helps us understand the meaning and importance of in situ and in transit visualization to the general HPC community as well as the choice of LAMMPS by the ALCF team.

Just as Argonne will host the fastest U.S. supercomputer with Aurora, TACC will be home to Frontera, which will become the fastest academic supercomputer in the United States when it becomes operational in 2019.

Navrátil notes, “We expect in situ workflows to become increasingly necessary on Frontera and across all large-scale simulation science.” He believes that, “In transit analysis will also play an increasing role as simulations improve support for loosely-coupled in situ frameworks. With an in transit pathway, the simulation resources do not need to be shared for analysis tasks, which is favorable when analysis is compute-intensive, or when the simulation requires all available resources itself.”

LAMMPS is a compute intensive application plus it is a very popular simulation code, which makes it a natural testbed for SENSEI as it lets large numbers of users explore the benefits of in situ visualization plus the load balancing benefits of in transit visualization and analysis. SENSEI is also being used in multiple science domains, including molecular dynamics and materials science.

An in transit workflow using SENSEI and OSPRay is shown below.

Figure 1: LAMMPS using SENSEI to execute an in transit visualization and analysis work flow. (Image courtesy taken from Usher, et.al.[iii])
Choosing the right rendering back end

SENSEI is very flexible and allows researchers to perform analysis and use either OpenGL rendering or create photo real images. Jim Jeffers (senior director and senior principle engineer, Intel Visualization Solutions) notes that the interactive performance delivered by the Intel Rendering Framework and photorealistic rendering with the freely available OSPRay library and viewer, “addresses the need and creates the want” for photorealistic rendering. Succinctly, interactive ray tracing with its inherent lighting capability lets scientists get more from their data. Jeffers’ is famous for stating, “a picture is worth an exabyte.”

The ALCF team provided the following figure to illustrate what is possible when instrumenting LAMMPS with SENSEI. They used the Intel OSPRay library that is part of the Intel Rendering Framework and the libIS, a lightweight, flexible library to create this in transit visualization. However, SENSEI was designed[iv] work with other libraries in place of libIS such as catalyst (part of ParaView), ADIOS (from Oak Ridge National Laboratory), and LibSim (part of VisIt), as well as GPU-based software to perform in transit visualizations.

Figure 2: Interactive in situ visualization of a 172k atom simulation of silicene formation [6] with 128 LAMMPS ranks sending to 16 renderer ranks, all executed on Theta. (Image from Usher, et. al[v])
SENSEI is not the first code to provide easy access to both OpenGL and ray tracing back end and analytic capabilities. Both the popular VisIt[vi] and ParaView viewers make it simple to switch between or even combine triangle-based OpenGL rendering with Intel OpenSWR and photorealistic ray-traced rendering with Intel OSPRay.

Understanding Software Defined Visualization (SDVis)

The foundation of CPU-based in situ and in transit visualization is Software Defined Visualization. The core functionality are the freely available, open-source Intel OSPRay, Embree, and OpenSWR libraries. These libraries have been incorporated into the Intel® Rendering Framework stack as shown below.

Figure 3: Scientific and Professional rendering stacks using the Intel Rendering Framework (Image courtesy Intel)

Using CPUs for rendering has taken the HPC community by storm. Rizzi summarizes the interest at Argonne by noting, “We want to enable visualization on our supercomputers which are CPU-based”. Navrátil highlights TACC’s commitment by pointing out that, “CPU-based SDVis will be our primary visual analysis mode on Frontera, leveraging the Intel Rendering Framework stack.”

Scaling and the ability to run efficiently are two key ideas behind the OSPRay ray tracing and the OpenSWR OpenGL SDVis renderer.

Kitware, for example, performed trillion triangle OpenGL visualizations using the LANL Trinity supercomputer. David DeMarle, (visualization luminary and engineer at Kitware) observes that, “CPU-based OpenGL performance does not trail off even when rendering meshes containing one trillion (10^12) triangles on the Trinity leadership class supercomputer. Further, we might see a 10-20 trillion triangle per second result as our current benchmark used only 1/19th of the machine.” The ability of the CPU to access large amounts of memory is key to realizing trillion triangle per second rendering capability.

Meanwhile, OSPRay users have demonstrated the ability to render and visualize large, photorealistic images on everything from cosmological data sets to molecules and complex scenes. No special hardware is required for rendering, which can achieve interactive photorealism on as few as eight Intel Xeon Scalable 8180 processors or scale to high-quality rendering for in situ nodes. [vii] [viii] [ix] [x]

Viewing the rendered images

The “visualize anywhere” nature of CPU-based SDVis means that visualizing locally or remotely is possible on devices that can display from memory. Extraordinary display flexibility without device dependencies makes “visualize anywhere” even better. HPC users appreciate how they can view results on their laptops and switch to display walls or a cave.

SENSEI also supports existing batched save-to-storage workflows.

Summary

The HPC community has always been about pressing the limits of computation. For this reason, in situ and in transit visualization frameworks have been created to work with CPU-based rendering to eliminate data movement. In this way, visualization can scale and keep pace with simulation as the HPC community runs on petascale and anticipates the next generation exascale supercomputers.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected].


[i] https://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdf

[ii] https://lammps.sandia.gov/doc/Howto_couple.html

[iii] Will Usher, Silvio Rizzi, Ingo Wald, Jefferson Amstutz, Joseph Insley, Venkatram Vishwanath, Nicola Ferrier, Michael E. Papka, and Valerio Pascucci. 2018. libIS: A Lightweight Library for Flexible In Transit Visualization. In ISAV: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV ’18), November 12, 2018, Dallas, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3281464.3281466.

[v] https://doi.org/10.1145/3281464.3281466

[vi] https://tacc.github.io/visitOSPRay/

[vii] http://sdvis.org/

[viii] http://www.cgw.com/Press-Center/In-Focus/2018/Scalable-CPU-Based-SDVis-Enables-Interactive-Pho.aspx

[ix] https://www.ixpug.org/documents/1496440983IXPUG_insitu_S1_Jeffers.pdf

[x] http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This