Preparing for the Arrival of Aurora with CPU-based Interactive Visualization

By Rob Farber

October 30, 2018

In preparation for the arrival of Aurora, slated to be the first U.S. exascale supercomputer, Argonne National Laboratory is actively working to make techniques such as in situ and in transit visualization and analysis available to their user community plus the HPC community at large. The result is a DOE multi-institutional effort that includes Argonne, private companies, and other national labs to leverage SENSEI, a portable framework that enables in situ, in transit, and traditional batch visualization workflows that can use either ray tracing or triangle-based rendering back ends, for analysis and scalable interactive rendering.

In situ visualization has been identified as a key technology to enable science at the exascale[i]. In situ visualization means that the visualization occurs on the same nodes that perform the computation. In transit visualization is not as directly coupled to the simulation, and can help load-balance by using more nodes to support computationally expensive simulations like LAMMPs. Unlike in situ, in transit does incur some overhead when moving data across the communications fabric between nodes. Both methods keep the data in memory and avoid writing to storage.

Joseph Insley (visualization and analysis team lead at the Argonne Leadership Computing Facility) points out, “With SENSEI, users can utilize in situ and in transit techniques to address the widening gap between Flop/s and I/O capacity which is making full-resolution, I/O-intensive post hoc analysis prohibitively expensive, if not impossible.” Silvio Rizzi (assistant computer scientist, Argonne) highlights portability when he states, “the idea behind SENSEI is to write once and use anywhere.”

The Argonne team led by Nicola Ferrier as PI has adapted the popular LAMMPS (e.g. the Large-scale Atomic/Molecular Massively Parallel Simulator) code to demonstrate the benefits of the SENSEI framework. The integration of SENSEI made use of existing mechanisms in LAMMPS for coupling with other simulation codes.[ii]

Understanding the choice of LAMMPS as a SENSEI testbed

Paul Navrátil, director of Visualization at the Texas Advanced Computing Center (TACC), helps us understand the meaning and importance of in situ and in transit visualization to the general HPC community as well as the choice of LAMMPS by the ALCF team.

Just as Argonne will host the fastest U.S. supercomputer with Aurora, TACC will be home to Frontera, which will become the fastest academic supercomputer in the United States when it becomes operational in 2019.

Navrátil notes, “We expect in situ workflows to become increasingly necessary on Frontera and across all large-scale simulation science.” He believes that, “In transit analysis will also play an increasing role as simulations improve support for loosely-coupled in situ frameworks. With an in transit pathway, the simulation resources do not need to be shared for analysis tasks, which is favorable when analysis is compute-intensive, or when the simulation requires all available resources itself.”

LAMMPS is a compute intensive application plus it is a very popular simulation code, which makes it a natural testbed for SENSEI as it lets large numbers of users explore the benefits of in situ visualization plus the load balancing benefits of in transit visualization and analysis. SENSEI is also being used in multiple science domains, including molecular dynamics and materials science.

An in transit workflow using SENSEI and OSPRay is shown below.

Figure 1: LAMMPS using SENSEI to execute an in transit visualization and analysis work flow. (Image courtesy taken from Usher, et.al.[iii])
Choosing the right rendering back end

SENSEI is very flexible and allows researchers to perform analysis and use either OpenGL rendering or create photo real images. Jim Jeffers (senior director and senior principle engineer, Intel Visualization Solutions) notes that the interactive performance delivered by the Intel Rendering Framework and photorealistic rendering with the freely available OSPRay library and viewer, “addresses the need and creates the want” for photorealistic rendering. Succinctly, interactive ray tracing with its inherent lighting capability lets scientists get more from their data. Jeffers’ is famous for stating, “a picture is worth an exabyte.”

The ALCF team provided the following figure to illustrate what is possible when instrumenting LAMMPS with SENSEI. They used the Intel OSPRay library that is part of the Intel Rendering Framework and the libIS, a lightweight, flexible library to create this in transit visualization. However, SENSEI was designed[iv] work with other libraries in place of libIS such as catalyst (part of ParaView), ADIOS (from Oak Ridge National Laboratory), and LibSim (part of VisIt), as well as GPU-based software to perform in transit visualizations.

Figure 2: Interactive in situ visualization of a 172k atom simulation of silicene formation [6] with 128 LAMMPS ranks sending to 16 renderer ranks, all executed on Theta. (Image from Usher, et. al[v])
SENSEI is not the first code to provide easy access to both OpenGL and ray tracing back end and analytic capabilities. Both the popular VisIt[vi] and ParaView viewers make it simple to switch between or even combine triangle-based OpenGL rendering with Intel OpenSWR and photorealistic ray-traced rendering with Intel OSPRay.

Understanding Software Defined Visualization (SDVis)

The foundation of CPU-based in situ and in transit visualization is Software Defined Visualization. The core functionality are the freely available, open-source Intel OSPRay, Embree, and OpenSWR libraries. These libraries have been incorporated into the Intel® Rendering Framework stack as shown below.

Figure 3: Scientific and Professional rendering stacks using the Intel Rendering Framework (Image courtesy Intel)

Using CPUs for rendering has taken the HPC community by storm. Rizzi summarizes the interest at Argonne by noting, “We want to enable visualization on our supercomputers which are CPU-based”. Navrátil highlights TACC’s commitment by pointing out that, “CPU-based SDVis will be our primary visual analysis mode on Frontera, leveraging the Intel Rendering Framework stack.”

Scaling and the ability to run efficiently are two key ideas behind the OSPRay ray tracing and the OpenSWR OpenGL SDVis renderer.

Kitware, for example, performed trillion triangle OpenGL visualizations using the LANL Trinity supercomputer. David DeMarle, (visualization luminary and engineer at Kitware) observes that, “CPU-based OpenGL performance does not trail off even when rendering meshes containing one trillion (10^12) triangles on the Trinity leadership class supercomputer. Further, we might see a 10-20 trillion triangle per second result as our current benchmark used only 1/19th of the machine.” The ability of the CPU to access large amounts of memory is key to realizing trillion triangle per second rendering capability.

Meanwhile, OSPRay users have demonstrated the ability to render and visualize large, photorealistic images on everything from cosmological data sets to molecules and complex scenes. No special hardware is required for rendering, which can achieve interactive photorealism on as few as eight Intel Xeon Scalable 8180 processors or scale to high-quality rendering for in situ nodes. [vii] [viii] [ix] [x]

Viewing the rendered images

The “visualize anywhere” nature of CPU-based SDVis means that visualizing locally or remotely is possible on devices that can display from memory. Extraordinary display flexibility without device dependencies makes “visualize anywhere” even better. HPC users appreciate how they can view results on their laptops and switch to display walls or a cave.

SENSEI also supports existing batched save-to-storage workflows.

Summary

The HPC community has always been about pressing the limits of computation. For this reason, in situ and in transit visualization frameworks have been created to work with CPU-based rendering to eliminate data movement. In this way, visualization can scale and keep pace with simulation as the HPC community runs on petascale and anticipates the next generation exascale supercomputers.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected].


[i] https://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdf

[ii] https://lammps.sandia.gov/doc/Howto_couple.html

[iii] Will Usher, Silvio Rizzi, Ingo Wald, Jefferson Amstutz, Joseph Insley, Venkatram Vishwanath, Nicola Ferrier, Michael E. Papka, and Valerio Pascucci. 2018. libIS: A Lightweight Library for Flexible In Transit Visualization. In ISAV: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV ’18), November 12, 2018, Dallas, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3281464.3281466.

[v] https://doi.org/10.1145/3281464.3281466

[vi] https://tacc.github.io/visitOSPRay/

[vii] http://sdvis.org/

[viii] http://www.cgw.com/Press-Center/In-Focus/2018/Scalable-CPU-Based-SDVis-Enables-Interactive-Pho.aspx

[ix] https://www.ixpug.org/documents/1496440983IXPUG_insitu_S1_Jeffers.pdf

[x] http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its next-generation IPU platform: the IPU-Machine M2000. With the n Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic competitiveness, and national security. This has been the mai Read more…

By Jack Dongarra and Stanimire Tomov

There’s No Storage Like ATGC: Breakthrough Helps to Store ‘The Wizard of Oz’ in DNA

July 15, 2020

Even as storage density reaches new heights, many researchers have their eyes set on a paradigm shift in high-density information storage: storing data in the four nucleotides (A, T, G and C) that constitute DNA, a metho Read more…

By Oliver Peckham

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle forward demonstrating an event-driven, visual-tactile perce Read more…

By John Russell

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its nex Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic c Read more…

By Jack Dongarra and Stanimire Tomov

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This