Preparing for the Arrival of Aurora with CPU-based Interactive Visualization

By Rob Farber

October 30, 2018

In preparation for the arrival of Aurora, slated to be the first U.S. exascale supercomputer, Argonne National Laboratory is actively working to make techniques such as in situ and in transit visualization and analysis available to their user community plus the HPC community at large. The result is a DOE multi-institutional effort that includes Argonne, private companies, and other national labs to leverage SENSEI, a portable framework that enables in situ, in transit, and traditional batch visualization workflows that can use either ray tracing or triangle-based rendering back ends, for analysis and scalable interactive rendering.

In situ visualization has been identified as a key technology to enable science at the exascale[i]. In situ visualization means that the visualization occurs on the same nodes that perform the computation. In transit visualization is not as directly coupled to the simulation, and can help load-balance by using more nodes to support computationally expensive simulations like LAMMPs. Unlike in situ, in transit does incur some overhead when moving data across the communications fabric between nodes. Both methods keep the data in memory and avoid writing to storage.

Joseph Insley (visualization and analysis team lead at the Argonne Leadership Computing Facility) points out, “With SENSEI, users can utilize in situ and in transit techniques to address the widening gap between Flop/s and I/O capacity which is making full-resolution, I/O-intensive post hoc analysis prohibitively expensive, if not impossible.” Silvio Rizzi (assistant computer scientist, Argonne) highlights portability when he states, “the idea behind SENSEI is to write once and use anywhere.”

The Argonne team led by Nicola Ferrier as PI has adapted the popular LAMMPS (e.g. the Large-scale Atomic/Molecular Massively Parallel Simulator) code to demonstrate the benefits of the SENSEI framework. The integration of SENSEI made use of existing mechanisms in LAMMPS for coupling with other simulation codes.[ii]

Understanding the choice of LAMMPS as a SENSEI testbed

Paul Navrátil, director of Visualization at the Texas Advanced Computing Center (TACC), helps us understand the meaning and importance of in situ and in transit visualization to the general HPC community as well as the choice of LAMMPS by the ALCF team.

Just as Argonne will host the fastest U.S. supercomputer with Aurora, TACC will be home to Frontera, which will become the fastest academic supercomputer in the United States when it becomes operational in 2019.

Navrátil notes, “We expect in situ workflows to become increasingly necessary on Frontera and across all large-scale simulation science.” He believes that, “In transit analysis will also play an increasing role as simulations improve support for loosely-coupled in situ frameworks. With an in transit pathway, the simulation resources do not need to be shared for analysis tasks, which is favorable when analysis is compute-intensive, or when the simulation requires all available resources itself.”

LAMMPS is a compute intensive application plus it is a very popular simulation code, which makes it a natural testbed for SENSEI as it lets large numbers of users explore the benefits of in situ visualization plus the load balancing benefits of in transit visualization and analysis. SENSEI is also being used in multiple science domains, including molecular dynamics and materials science.

An in transit workflow using SENSEI and OSPRay is shown below.

Figure 1: LAMMPS using SENSEI to execute an in transit visualization and analysis work flow. (Image courtesy taken from Usher, et.al.[iii])
Choosing the right rendering back end

SENSEI is very flexible and allows researchers to perform analysis and use either OpenGL rendering or create photo real images. Jim Jeffers (senior director and senior principle engineer, Intel Visualization Solutions) notes that the interactive performance delivered by the Intel Rendering Framework and photorealistic rendering with the freely available OSPRay library and viewer, “addresses the need and creates the want” for photorealistic rendering. Succinctly, interactive ray tracing with its inherent lighting capability lets scientists get more from their data. Jeffers’ is famous for stating, “a picture is worth an exabyte.”

The ALCF team provided the following figure to illustrate what is possible when instrumenting LAMMPS with SENSEI. They used the Intel OSPRay library that is part of the Intel Rendering Framework and the libIS, a lightweight, flexible library to create this in transit visualization. However, SENSEI was designed[iv] work with other libraries in place of libIS such as catalyst (part of ParaView), ADIOS (from Oak Ridge National Laboratory), and LibSim (part of VisIt), as well as GPU-based software to perform in transit visualizations.

Figure 2: Interactive in situ visualization of a 172k atom simulation of silicene formation [6] with 128 LAMMPS ranks sending to 16 renderer ranks, all executed on Theta. (Image from Usher, et. al[v])
SENSEI is not the first code to provide easy access to both OpenGL and ray tracing back end and analytic capabilities. Both the popular VisIt[vi] and ParaView viewers make it simple to switch between or even combine triangle-based OpenGL rendering with Intel OpenSWR and photorealistic ray-traced rendering with Intel OSPRay.

Understanding Software Defined Visualization (SDVis)

The foundation of CPU-based in situ and in transit visualization is Software Defined Visualization. The core functionality are the freely available, open-source Intel OSPRay, Embree, and OpenSWR libraries. These libraries have been incorporated into the Intel® Rendering Framework stack as shown below.

Figure 3: Scientific and Professional rendering stacks using the Intel Rendering Framework (Image courtesy Intel)

Using CPUs for rendering has taken the HPC community by storm. Rizzi summarizes the interest at Argonne by noting, “We want to enable visualization on our supercomputers which are CPU-based”. Navrátil highlights TACC’s commitment by pointing out that, “CPU-based SDVis will be our primary visual analysis mode on Frontera, leveraging the Intel Rendering Framework stack.”

Scaling and the ability to run efficiently are two key ideas behind the OSPRay ray tracing and the OpenSWR OpenGL SDVis renderer.

Kitware, for example, performed trillion triangle OpenGL visualizations using the LANL Trinity supercomputer. David DeMarle, (visualization luminary and engineer at Kitware) observes that, “CPU-based OpenGL performance does not trail off even when rendering meshes containing one trillion (10^12) triangles on the Trinity leadership class supercomputer. Further, we might see a 10-20 trillion triangle per second result as our current benchmark used only 1/19th of the machine.” The ability of the CPU to access large amounts of memory is key to realizing trillion triangle per second rendering capability.

Meanwhile, OSPRay users have demonstrated the ability to render and visualize large, photorealistic images on everything from cosmological data sets to molecules and complex scenes. No special hardware is required for rendering, which can achieve interactive photorealism on as few as eight Intel Xeon Scalable 8180 processors or scale to high-quality rendering for in situ nodes. [vii] [viii] [ix] [x]

Viewing the rendered images

The “visualize anywhere” nature of CPU-based SDVis means that visualizing locally or remotely is possible on devices that can display from memory. Extraordinary display flexibility without device dependencies makes “visualize anywhere” even better. HPC users appreciate how they can view results on their laptops and switch to display walls or a cave.

SENSEI also supports existing batched save-to-storage workflows.

Summary

The HPC community has always been about pressing the limits of computation. For this reason, in situ and in transit visualization frameworks have been created to work with CPU-based rendering to eliminate data movement. In this way, visualization can scale and keep pace with simulation as the HPC community runs on petascale and anticipates the next generation exascale supercomputers.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected].


[i] https://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdf

[ii] https://lammps.sandia.gov/doc/Howto_couple.html

[iii] Will Usher, Silvio Rizzi, Ingo Wald, Jefferson Amstutz, Joseph Insley, Venkatram Vishwanath, Nicola Ferrier, Michael E. Papka, and Valerio Pascucci. 2018. libIS: A Lightweight Library for Flexible In Transit Visualization. In ISAV: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV ’18), November 12, 2018, Dallas, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3281464.3281466.

[v] https://doi.org/10.1145/3281464.3281466

[vi] https://tacc.github.io/visitOSPRay/

[vii] http://sdvis.org/

[viii] http://www.cgw.com/Press-Center/In-Focus/2018/Scalable-CPU-Based-SDVis-Enables-Interactive-Pho.aspx

[ix] https://www.ixpug.org/documents/1496440983IXPUG_insitu_S1_Jeffers.pdf

[x] http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Companies D-Wave and Rigetti Again Face Stock Delisting

October 4, 2024

Both D-Wave (NYSE: QBTS) and Rigetti (Nasdaq: RGTI) are again facing stock delisting. This is a third time for D-Wave, which issued a press release today following notification by the SEC. Rigetti was notified of delisti Read more…

Alps Scientific Symposium Highlights AI’s Role in Tackling Science’s Biggest Challenges

October 4, 2024

ETH Zürich recently celebrated the launch of the AI-optimized “Alps” supercomputer with a scientific symposium focused on the future possibilities of scientific AI thanks to increased compute power and a flexible ar Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of its Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, the Read more…

IBM Quantum Summit Evolves into Developer Conference

October 2, 2024

Instead of its usual quantum summit this year, IBM will hold its first IBM Quantum Developer Conference which the company is calling, “an exclusive, first-of-its-kind.” It’s planned as an in-person conference at th Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed that the company will release Falcon Shores as a GPU. The com Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever ph Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

How GPUs Are Embedded in the HPC Landscape

September 23, 2024

Grasping the basics of Graphics Processing Unit (GPU) architecture is crucial for understanding how these powerful processors function, particularly in high-per Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire