Preparing for the Arrival of Aurora with CPU-based Interactive Visualization

By Rob Farber

October 30, 2018

In preparation for the arrival of Aurora, slated to be the first U.S. exascale supercomputer, Argonne National Laboratory is actively working to make techniques such as in situ and in transit visualization and analysis available to their user community plus the HPC community at large. The result is a DOE multi-institutional effort that includes Argonne, private companies, and other national labs to leverage SENSEI, a portable framework that enables in situ, in transit, and traditional batch visualization workflows that can use either ray tracing or triangle-based rendering back ends, for analysis and scalable interactive rendering.

In situ visualization has been identified as a key technology to enable science at the exascale[i]. In situ visualization means that the visualization occurs on the same nodes that perform the computation. In transit visualization is not as directly coupled to the simulation, and can help load-balance by using more nodes to support computationally expensive simulations like LAMMPs. Unlike in situ, in transit does incur some overhead when moving data across the communications fabric between nodes. Both methods keep the data in memory and avoid writing to storage.

Joseph Insley (visualization and analysis team lead at the Argonne Leadership Computing Facility) points out, “With SENSEI, users can utilize in situ and in transit techniques to address the widening gap between Flop/s and I/O capacity which is making full-resolution, I/O-intensive post hoc analysis prohibitively expensive, if not impossible.” Silvio Rizzi (assistant computer scientist, Argonne) highlights portability when he states, “the idea behind SENSEI is to write once and use anywhere.”

The Argonne team led by Nicola Ferrier as PI has adapted the popular LAMMPS (e.g. the Large-scale Atomic/Molecular Massively Parallel Simulator) code to demonstrate the benefits of the SENSEI framework. The integration of SENSEI made use of existing mechanisms in LAMMPS for coupling with other simulation codes.[ii]

Understanding the choice of LAMMPS as a SENSEI testbed

Paul Navrátil, director of Visualization at the Texas Advanced Computing Center (TACC), helps us understand the meaning and importance of in situ and in transit visualization to the general HPC community as well as the choice of LAMMPS by the ALCF team.

Just as Argonne will host the fastest U.S. supercomputer with Aurora, TACC will be home to Frontera, which will become the fastest academic supercomputer in the United States when it becomes operational in 2019.

Navrátil notes, “We expect in situ workflows to become increasingly necessary on Frontera and across all large-scale simulation science.” He believes that, “In transit analysis will also play an increasing role as simulations improve support for loosely-coupled in situ frameworks. With an in transit pathway, the simulation resources do not need to be shared for analysis tasks, which is favorable when analysis is compute-intensive, or when the simulation requires all available resources itself.”

LAMMPS is a compute intensive application plus it is a very popular simulation code, which makes it a natural testbed for SENSEI as it lets large numbers of users explore the benefits of in situ visualization plus the load balancing benefits of in transit visualization and analysis. SENSEI is also being used in multiple science domains, including molecular dynamics and materials science.

An in transit workflow using SENSEI and OSPRay is shown below.

Figure 1: LAMMPS using SENSEI to execute an in transit visualization and analysis work flow. (Image courtesy taken from Usher, et.al.[iii])
Choosing the right rendering back end

SENSEI is very flexible and allows researchers to perform analysis and use either OpenGL rendering or create photo real images. Jim Jeffers (senior director and senior principle engineer, Intel Visualization Solutions) notes that the interactive performance delivered by the Intel Rendering Framework and photorealistic rendering with the freely available OSPRay library and viewer, “addresses the need and creates the want” for photorealistic rendering. Succinctly, interactive ray tracing with its inherent lighting capability lets scientists get more from their data. Jeffers’ is famous for stating, “a picture is worth an exabyte.”

The ALCF team provided the following figure to illustrate what is possible when instrumenting LAMMPS with SENSEI. They used the Intel OSPRay library that is part of the Intel Rendering Framework and the libIS, a lightweight, flexible library to create this in transit visualization. However, SENSEI was designed[iv] work with other libraries in place of libIS such as catalyst (part of ParaView), ADIOS (from Oak Ridge National Laboratory), and LibSim (part of VisIt), as well as GPU-based software to perform in transit visualizations.

Figure 2: Interactive in situ visualization of a 172k atom simulation of silicene formation [6] with 128 LAMMPS ranks sending to 16 renderer ranks, all executed on Theta. (Image from Usher, et. al[v])
SENSEI is not the first code to provide easy access to both OpenGL and ray tracing back end and analytic capabilities. Both the popular VisIt[vi] and ParaView viewers make it simple to switch between or even combine triangle-based OpenGL rendering with Intel OpenSWR and photorealistic ray-traced rendering with Intel OSPRay.

Understanding Software Defined Visualization (SDVis)

The foundation of CPU-based in situ and in transit visualization is Software Defined Visualization. The core functionality are the freely available, open-source Intel OSPRay, Embree, and OpenSWR libraries. These libraries have been incorporated into the Intel® Rendering Framework stack as shown below.

Figure 3: Scientific and Professional rendering stacks using the Intel Rendering Framework (Image courtesy Intel)

Using CPUs for rendering has taken the HPC community by storm. Rizzi summarizes the interest at Argonne by noting, “We want to enable visualization on our supercomputers which are CPU-based”. Navrátil highlights TACC’s commitment by pointing out that, “CPU-based SDVis will be our primary visual analysis mode on Frontera, leveraging the Intel Rendering Framework stack.”

Scaling and the ability to run efficiently are two key ideas behind the OSPRay ray tracing and the OpenSWR OpenGL SDVis renderer.

Kitware, for example, performed trillion triangle OpenGL visualizations using the LANL Trinity supercomputer. David DeMarle, (visualization luminary and engineer at Kitware) observes that, “CPU-based OpenGL performance does not trail off even when rendering meshes containing one trillion (10^12) triangles on the Trinity leadership class supercomputer. Further, we might see a 10-20 trillion triangle per second result as our current benchmark used only 1/19th of the machine.” The ability of the CPU to access large amounts of memory is key to realizing trillion triangle per second rendering capability.

Meanwhile, OSPRay users have demonstrated the ability to render and visualize large, photorealistic images on everything from cosmological data sets to molecules and complex scenes. No special hardware is required for rendering, which can achieve interactive photorealism on as few as eight Intel Xeon Scalable 8180 processors or scale to high-quality rendering for in situ nodes. [vii] [viii] [ix] [x]

Viewing the rendered images

The “visualize anywhere” nature of CPU-based SDVis means that visualizing locally or remotely is possible on devices that can display from memory. Extraordinary display flexibility without device dependencies makes “visualize anywhere” even better. HPC users appreciate how they can view results on their laptops and switch to display walls or a cave.

SENSEI also supports existing batched save-to-storage workflows.

Summary

The HPC community has always been about pressing the limits of computation. For this reason, in situ and in transit visualization frameworks have been created to work with CPU-based rendering to eliminate data movement. In this way, visualization can scale and keep pace with simulation as the HPC community runs on petascale and anticipates the next generation exascale supercomputers.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected].


[i] https://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdf

[ii] https://lammps.sandia.gov/doc/Howto_couple.html

[iii] Will Usher, Silvio Rizzi, Ingo Wald, Jefferson Amstutz, Joseph Insley, Venkatram Vishwanath, Nicola Ferrier, Michael E. Papka, and Valerio Pascucci. 2018. libIS: A Lightweight Library for Flexible In Transit Visualization. In ISAV: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV ’18), November 12, 2018, Dallas, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3281464.3281466.

[v] https://doi.org/10.1145/3281464.3281466

[vi] https://tacc.github.io/visitOSPRay/

[vii] http://sdvis.org/

[viii] http://www.cgw.com/Press-Center/In-Focus/2018/Scalable-CPU-Based-SDVis-Enables-Interactive-Pho.aspx

[ix] https://www.ixpug.org/documents/1496440983IXPUG_insitu_S1_Jeffers.pdf

[x] http://www.techenablement.com/third-party-use-cases-illustrate-the-success-of-cpu-based-visualization/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

HPC Perspectives with Dr. Seid Koric

September 12, 2019

Brendan McGinty, director of Industry for the National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign, kicks off the first in a series of pieces profiling leaders in high performance computing (HPC), writing for the... Read more…

By Brendan McGinty

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Building a Solid IA for Your AI

The journey to high performance precision medicine starts with designing and deploying a solid Information Architecture that addresses the spectrum of challenges from data and applications that need to be managed and orchestrated together to empower workloads from analytics to AI. Read more…

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have used the most cycles and typically drove hardware and softwa Read more…

By Elizabeth Leake

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

MIT Prepares for Satori…and a New 2 Petaflops Computer Too

August 27, 2019

Sometime this fall, MIT will fire up Satori – an $11.6 million compute cluster donated by IBM and coinciding with the opening of the MIT Stephen A. Schwarzma Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This