Singapore Startup Hatches At-Scale HPC Dev Cloud

By Tiffany Trader

April 26, 2019

At most supercomputer centers, it’s common practice to allocate 10 percent or less of the machine for application development purposes. Such limited availability especially hampers development projects intended for large-scale deployments. Some organizations do not have any on-premise cycles for their code development and others may be looking to evaluate architectures not easily accessible or not even on the market yet.

A new company aims to address all these scenarios with custom-built HPC development systems that are available on demand in the cloud.

In an ambitious undertaking, Singapore-based startup Archanan emerged from stealth yesterday with the beta launch of its cloud-based developer platform for building and testing at-scale code. Founded in February 2018 by computer engineers and NYU Stony Brook alums Alexander Nodeland and Lukasz Orlowski, Archanan has backing from multiple VCs in the Singapore area, including primary investor SGInnovate.

In February 2019, Archanan (pronounced “are-KAY-nin” – Men in Black fans may recall the reference) raised a SGD$1.2 million (USD $881k) seed round and currently has several partnerships in play with OEMs and well-known supercomputing centers. John Gustafson of Gustafson’s law fame is the company’s lead scientific advisor.

Although there exist a number of development environment toolkits in the market as well as an array of HPC cloud infrastructures, Archanan combines these front and back ends, further baking in hardware-level virtualization to provide HPC developers with a functional replica of their production or target architecture.

Organizations accepted into the beta program will access personalized virtual test environments that are an emulation of their organizations’ production system(s) via the Archanan development platform. Archanan’s web-based IDE allows users to debug large parallel jobs in C and C++ and Python on a few different emulated supercomputers, including NSCC Singapore’s Aspire-1. Users can also construct custom system designs, based on a small, but growing number of hardware options.

“The Archanan IDE provides a purpose-built parallel debugger and visualization tools where you can develop code at scale,” said Nodeland. “In the future, we will be expanding the library of available supercomputer emulators and we’ll also be expanding the availability of tools – both built in house and some community tools.”

The testing environment, provided via cloud infrastructure (Amazon Web Services is a partner), employs a combination of virtualization, emulation and encapsulation technologies enabling users to predict performance metrics without having to run all the production servers. The goal, said Nodeland in an interview with HPCwire, is to enable the offloading of all HPC development effort to the cloud.

“One of the primary reasons why more organizations, especially in the commercial space, aren’t utilizing the power of modern supercomputers, is the considerable challenge of effective coding at these larger, more complex scales,” said Gustafson, esteemed computer scientist and visiting scientist at A*STAR – Agency for Science, Technology and Research. “There is a big gap between a laptop and that of a remote, giant collection of distributed, interconnected processors. By combining hardware-level virtualization and cloud computing, Archanan has figured out how to bridge both the technical, but also economical gaps that have presented adoption challenges for computing at this level. It’s exciting to see that we’re on the precipice of the democratization of high-performance computing across industries, at last.”

With multiple layers of abstraction in the stack, these testing and debugging systems are not intended to replicate the performance of the production environment, rather they address the pain points faced by many HPC developers stemming from limited access to production machine cycles.

“We provide an on-demand environment where users can develop their code at scale, meaning that if they are going to be running their production application on 30,000 cores, they can do their development on a virtual 30,000 cores, specifically to test how the network is going to behave in such a scenario, how MPI is going to behave, etc.,” said Nodeland.

Cited benefits include faster time to results due to shortened development time, developing code at the target production scale, and the subsequent minimization of port-over failures from the development to the production environment.

The company is confident it can ensure a high degree of scalability – outside of, possibly, the top 10 or 20 leadership machines. A white paper is in the works that will document internal performance.

To onboard a new supercomputing center onto its platform, Archanan gets together with the applications specialists, the solution architects and the support team for the supercomputing center to build the model with them. It employs all the same software packages, the same compiler, the same version of Linux, etc. (encapsulated in a Singularity container) and emulates down to the component level — the processors, the accelerators, and the network elements.

This is a two-week to two-month process during which the Archanan team fine tunes the emulator so it can accurately predict performance.

The Archanan development platform currently includes support for x86 provided by Intel and AMD, and also for Arm. Nvidia K80s and P100s GPUs are also supported. The company is working on support for Power 9 and Power 10, as well as NEC Vector Engines. Emulation for other architectures, including FPGAs, are on Archanan’s roadmap.

HPC sites participating in the beta program access the platform via a yearly or monthly subscription with a mechanism for overflow billing based on virtual node hours. Another use case enables OEMs or systems integrators to provide their customers with an evaluation system during the tendering and commissioning process. In that model, Archanan emulates the supercomputer for some fraction of the cost of the machine.

A third, forthcoming, usage model will be individual or group licenses. Archanan plans to offer monthly memberships through the Github marketplace so smaller users can try the system and run tests for their own jobs even if their organizations are not customers.

Archanan says its beta roster includes supercomputing centers and research groups based in Singapore, Australia and China.

While Archanan is going after traditional and enterprise HPC for its initial target market, Nodeland foresees expanding to more general AI, machine learning and big data workloads. The company has recently increased its workforce from two to seven employees, and has several open positions it is hiring for. It expects to expand its staff to 15 by year end.

Nodeland acknowledged there is work to be done building up their libraries. Given the heavy lift, it’s encouraging that the company has garnered the support of Gustafson as well as Wolfgang Gentzsch, co-founder and CEO of The UberCloud.

“Virtually all the software development tools in high-end, complex computing are used on desktop workstations and laptops, drastically limiting the development and debugging capability of these tools — it’s analogous to trying to recreate a masterpiece on an Etch-a-Sketch,” said Wolfgang Gentzsch, co-founder and CEO of The UberCloud. “Archanan’s cloud-based development platform extends these workstations and lets developers construct their code at scale, as if they were doing it directly on these large, complex architectures, thus creating better quality software in shorter time.”

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire