Singapore Startup Hatches At-Scale HPC Dev Cloud

By Tiffany Trader

April 26, 2019

At most supercomputer centers, it’s common practice to allocate 10 percent or less of the machine for application development purposes. Such limited availability especially hampers development projects intended for large-scale deployments. Some organizations do not have any on-premise cycles for their code development and others may be looking to evaluate architectures not easily accessible or not even on the market yet.

A new company aims to address all these scenarios with custom-built HPC development systems that are available on demand in the cloud.

In an ambitious undertaking, Singapore-based startup Archanan emerged from stealth yesterday with the beta launch of its cloud-based developer platform for building and testing at-scale code. Founded in February 2018 by computer engineers and NYU Stony Brook alums Alexander Nodeland and Lukasz Orlowski, Archanan has backing from multiple VCs in the Singapore area, including primary investor SGInnovate.

In February 2019, Archanan (pronounced “are-KAY-nin” – Men in Black fans may recall the reference) raised a SGD$1.2 million (USD $881k) seed round and currently has several partnerships in play with OEMs and well-known supercomputing centers. John Gustafson of Gustafson’s law fame is the company’s lead scientific advisor.

Although there exist a number of development environment toolkits in the market as well as an array of HPC cloud infrastructures, Archanan combines these front and back ends, further baking in hardware-level virtualization to provide HPC developers with a functional replica of their production or target architecture.

Organizations accepted into the beta program will access personalized virtual test environments that are an emulation of their organizations’ production system(s) via the Archanan development platform. Archanan’s web-based IDE allows users to debug large parallel jobs in C and C++ and Python on a few different emulated supercomputers, including NSCC Singapore’s Aspire-1. Users can also construct custom system designs, based on a small, but growing number of hardware options.

“The Archanan IDE provides a purpose-built parallel debugger and visualization tools where you can develop code at scale,” said Nodeland. “In the future, we will be expanding the library of available supercomputer emulators and we’ll also be expanding the availability of tools – both built in house and some community tools.”

The testing environment, provided via cloud infrastructure (Amazon Web Services is a partner), employs a combination of virtualization, emulation and encapsulation technologies enabling users to predict performance metrics without having to run all the production servers. The goal, said Nodeland in an interview with HPCwire, is to enable the offloading of all HPC development effort to the cloud.

“One of the primary reasons why more organizations, especially in the commercial space, aren’t utilizing the power of modern supercomputers, is the considerable challenge of effective coding at these larger, more complex scales,” said Gustafson, esteemed computer scientist and visiting scientist at A*STAR – Agency for Science, Technology and Research. “There is a big gap between a laptop and that of a remote, giant collection of distributed, interconnected processors. By combining hardware-level virtualization and cloud computing, Archanan has figured out how to bridge both the technical, but also economical gaps that have presented adoption challenges for computing at this level. It’s exciting to see that we’re on the precipice of the democratization of high-performance computing across industries, at last.”

With multiple layers of abstraction in the stack, these testing and debugging systems are not intended to replicate the performance of the production environment, rather they address the pain points faced by many HPC developers stemming from limited access to production machine cycles.

“We provide an on-demand environment where users can develop their code at scale, meaning that if they are going to be running their production application on 30,000 cores, they can do their development on a virtual 30,000 cores, specifically to test how the network is going to behave in such a scenario, how MPI is going to behave, etc.,” said Nodeland.

Cited benefits include faster time to results due to shortened development time, developing code at the target production scale, and the subsequent minimization of port-over failures from the development to the production environment.

The company is confident it can ensure a high degree of scalability – outside of, possibly, the top 10 or 20 leadership machines. A white paper is in the works that will document internal performance.

To onboard a new supercomputing center onto its platform, Archanan gets together with the applications specialists, the solution architects and the support team for the supercomputing center to build the model with them. It employs all the same software packages, the same compiler, the same version of Linux, etc. (encapsulated in a Singularity container) and emulates down to the component level — the processors, the accelerators, and the network elements.

This is a two-week to two-month process during which the Archanan team fine tunes the emulator so it can accurately predict performance.

The Archanan development platform currently includes support for x86 provided by Intel and AMD, and also for Arm. Nvidia K80s and P100s GPUs are also supported. The company is working on support for Power 9 and Power 10, as well as NEC Vector Engines. Emulation for other architectures, including FPGAs, are on Archanan’s roadmap.

HPC sites participating in the beta program access the platform via a yearly or monthly subscription with a mechanism for overflow billing based on virtual node hours. Another use case enables OEMs or systems integrators to provide their customers with an evaluation system during the tendering and commissioning process. In that model, Archanan emulates the supercomputer for some fraction of the cost of the machine.

A third, forthcoming, usage model will be individual or group licenses. Archanan plans to offer monthly memberships through the Github marketplace so smaller users can try the system and run tests for their own jobs even if their organizations are not customers.

Archanan says its beta roster includes supercomputing centers and research groups based in Singapore, Australia and China.

While Archanan is going after traditional and enterprise HPC for its initial target market, Nodeland foresees expanding to more general AI, machine learning and big data workloads. The company has recently increased its workforce from two to seven employees, and has several open positions it is hiring for. It expects to expand its staff to 15 by year end.

Nodeland acknowledged there is work to be done building up their libraries. Given the heavy lift, it’s encouraging that the company has garnered the support of Gustafson as well as Wolfgang Gentzsch, co-founder and CEO of The UberCloud.

“Virtually all the software development tools in high-end, complex computing are used on desktop workstations and laptops, drastically limiting the development and debugging capability of these tools — it’s analogous to trying to recreate a masterpiece on an Etch-a-Sketch,” said Wolfgang Gentzsch, co-founder and CEO of The UberCloud. “Archanan’s cloud-based development platform extends these workstations and lets developers construct their code at scale, as if they were doing it directly on these large, complex architectures, thus creating better quality software in shorter time.”

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This