Try Before You Buy? Test Driving a Supercomputer System

By Alex Nodeland, CEO, Archanan

October 7, 2019

In a recent HPCwire article, it was revealed that DARPA is working to optimize programming approaches with the goal of increasing the performance of parallel systems. This is a worthwhile goal, and one that is squarely inline with our vision at Archanan, where we have developed a cloud platform to help speed research and development cycles by providing tools and environments that enable programmers to develop and test applications in real-time, at scale. Our goal is to help maximize the organizational utility of any existing supercomputer (and/or other complex computing systems), while speeding up the tendering and procurement process for system vendors by allowing engineers to develop and test applications on a virtualized model of the future system.

Interestingly enough, the DARPA article notes that “one possible approach to more efficient development of executable HPC code would be accurate modeling and prediction of component performance within a full-blown HPC platform.” As fate would have it, this is exactly what we have developed at Archanan, and are currently rolling out at supercomputing centers across Asia.

We have developed a cloud-based platform in which an organization is able to administer a digital twin of their supercomputing system, emulating every component; from the storage and memory, down to the compute and fabric, thus enabling development and testing of an at scale system without tying up the production system itself. Using the Archanan Development Cloud, organizations are able to administer personal Integrated Development Environments (IDEs) in the Archanan Cloud that mimics their own system. This helps to create new, efficient workflows that eliminate testing bottlenecks and port-over failures associated with not being able to pre-test code at scale.

Through our rich background in supercomputing with several institutions, we have worked with many people in different roles across the high-performance computing community. We consistently hear about issues HPC developers are having with their workflows and are keenly aware that it is a very difficult challenge for an organization to change their development track after it has been deployed. The frustration always come down to the same challenges: over-subscribed test systems that aren’t up to scale with the production machine.

Our mission is to change this paradigm by adding value at the beginning of the lifecycle for a supercomputer by working with hardware manufacturers to provide emulation of their upcoming architectures. They, in turn, can share this virtualized hardware in the Archanan Development Cloud with their customers, thus providing a “test drive” of the system to help provide better estimates for the performance of the system and its elements during the tendering process. Imagine a research center being able to run their top five applications on a system during the tendering process, while making adjustments to the system to right-size its performance to match its application needs. This “at scale” test drive ability has previously been unavailable, but today, there is no reason for any organization to commit financial resources to these expensive systems without first giving them a thorough examination using cloud emulation.

This resource comes at an ideal time in the advancement of supercomputing systems as we see increasing numbers of hybrid machines and specialized, advanced applications like AI, where specific accelerators are being considered. In these cases, it’s very difficult to predict performance when you are working across many different types of hardware. We’ve seen many supercomputing centers either over-provisioning or under-provisioning particular hardware components of the larger system. This, of course, is largely dependent on the applications that are being run, and at what capacities, making it critical to be able to test-drive before committing to a system.

We’re also seeing an increasing number of machines with many processor architectures – multiple CPU architectures (Power, x86, ARM, etc.), accelerated by multiple accelerators (GPU, FPGA, etc.). Previously, it was very difficult to reliably gauge the performance of such a system, but today, we can provide a snapshot of the whole machine, providing accurate benchmarking while sampling it against the applications intended to be run on it.

The best part is that this ability is a single facet to the overall power of the Archanan Development Cloud. Once a system is requisitioned with specs fully determined, it may take upwards of two years before the purchasing organization will take custody of that system. Under the current paradigm, committing resources for development on that system is precarious because there is no way to accurately test the performance and portability of the applications being developed. However, with virtualized access to the machine, at-scale development can happen immediately. When an organization’s users have access to an emulated version of their future machine, production applications can be installed and ran as soon as the power is switched on. Simply put, the supercomputer can reach effectiveness more quickly if people can develop and optimize their applications at scale before the machine is delivered.

Additional possibilities exist as well. For organizations such as universities, where current access to production machines is very limited, independent virtualized clones of their system can be made available on an individual, account level basis. A university can feel less restricted in giving their students access to learn, explore, and experiment. Graduate students, undergrads, and anyone learning large-scale or parallel computing can have access to systems that look like the full machine. They can demonstrate production scale workloads and prepare their projects for a better chance at deployment on the physical machine. Virtualizing the production machine lowers the bar for access to it, while increasing the system’s value and effectiveness.

Users of Archanan will change their supercomputing processes for the better by lowering risk, eliminating bottlenecks and maximizing the utility of these valuable systems. We encourage any organization purchasing or building a supercomputing system to get in touch to discuss how we can help. For more information, please visit us at archanan.io, or download our solution brief.

Alex Nodeland is the CEO and Co-founder of Archanan.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire