Ultra-Thin Designer Materials Unlock Quantum Phenomena

December 18, 2020

Dec. 18, 2020 — A team of theoretical and experimental physicists at Aalto University have designed a new ultra-thin material that they have used to create elusive quantum states. Called one-dimensional Majorana zero energy modes, these quantum states could have a huge impact for quantum computing.

At the core of a quantum computer is a qubit, which is used to make high-speed calculations. The qubits that Google, for example, in its Sycamore processor unveiled last year, and others are currently using are very sensitive to noise and interference from the computer’s surroundings, which introduces errors into the calculations. A new type of qubit, called a topological qubit, could solve this issue, and 1D Majorana zero energy modes may be the key to making them. “A topological quantum computer is based on topological qubits, which are supposed to be much more noise tolerant than other qubits. However, topological qubits have not been produced in the lab yet,” explains Professor Peter Liljeroth, the lead researcher on the project.

What are MZMs?

MZMs are groups of electrons bound together in a specific way so they behave like a particle called a Majorana fermion, a semi-mythical particle first proposed by semi-mythical physicist Ettore Majorana in the 1930s. If Majorana’s theoretical particles could be bound together, they would work as a topological qubit. One catch: no evidence for their existence has ever been seen, either in the lab or in astronomy. Instead of attempting to make a particle that no one has ever seen anywhere in the universe, researchers instead try to make regular electrons behave like them.

To make MZMs, researchers need incredibly small materials, an area in which Professor Liljeroth’s group at Aalto University specializes. MZMs are formed by giving a group of electrons a very specific amount of energy, and then trapping them together so they can’t escape. To achieve this, the materials need to be 2-dimensional, and as thin as physically possible. To create 1D MZMs, the team needed to make an entirely new type of 2-D material: a topological superconductor.

Topological superconductivity is the property that occurs at the boundary of a magnetic electrical insulator and a superconductor. To create 1D MZMs, Professor Liljeroth’s team needed to be able to trap electrons together in a topological superconductor, however it’s not as simple as sticking any magnet to any superconductor.

“If you put most magnets on top of a superconductor, you stop it from being a superconductor,” explains Dr. Shawulienu Kezilebieke, the first author of the study. “The interactions between the materials disrupt their properties, but to make MZMs, you need the materials to interact just a little bit. The trick is to use 2-D materials: they interact with each other just enough to make the properties you need for MZMs, but not so much that they disrupt each other.”

The property in question is the spin. In a magnetic material, the spin is aligned all in the same direction, whereas in a superconductor the spin is anti-aligned with alternating directions. Bringing a magnet and a superconductor together usually destroys the alignment and anti-alignment of the spins. However, in 2-D layered materials the interactions between the materials are just enough to “tilt” the spins of the atoms enough that they create the specific spin state, called Rashba spin-orbit coupling, needed to make the MZMs.

1-D Majorana Zero energy form at the edge of a 2-D topological superconductor. Credit: Aalto University

Finding the MZMs

The topological superconductor in this study is made of a layer of chromium bromide, a material which is still magnetic when only one-atom-thick. Professor Liljeroth’s team grew one-atom-thick islands of chromium bromide on top of a superconducting crystal of niobium diselenide, and measured their electrical properties using a scanning tunneling microscope. At this point, they turned to the computer modeling expertise of Professor Adam Foster at Aalto University and Professor Teemu Ojanen, now at Tampere University, to understand what they had made.

“There was a lot of simulation work needed to prove that the signal we’re seeing was caused by MZMs, and not other effects,” says Professor Foster. “We needed to show that all the pieces fitted together to prove that we had produced MZMs.”

Now the team is sure that they can make 1D MZMs in 2-dimensional materials, the next step will be to attempt to make them into topological qubits. This step has so far eluded teams who have already made 0-dimensional MZMs, and the Aalto team are unwilling to speculate on if the process will be any easier with 1-dimensional MZMs, however they are optimistic about the future of 1D MZMs.

“The cool part of this paper is that we’ve made MZMs in 2-D materials,” said Professor Liljeroth “In principle these are easier to make and easier to customize the properties of, and ultimately make into a usable device.”

The paper, Topological superconductivity in a van der Waals heterostructure, was published 17 December in Nature.

More information: Shawulienu Kezilebieke et al. Topological superconductivity in a van der Waals heterostructure, Nature (2020). DOI: 10.1038/s41586-020-2989-y


Source: Aalto University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Channel Islands “A”

May 3, 2024

This is the second team from California State University, Channel Islands – or maybe it’s the first team? Not sure, but I do know they have two teams total, and this is one of them. As you’ll see in the video in Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market analysis that Hyperion Research is planning on rolling out over Read more…

2024 Winter Classic: Meet Team Jackson State

May 3, 2024

This is the second time we’re seeing a team from Jackson State university. The team features two veterans of the 2023 Winter Classic, which should help, but it’s also a team whose members are involved in a lot of oth Read more…

2024 Winter Classic: NASA Results Revealed!

May 2, 2024

In this edition of the Winter Classic Studio Update Show we reveal the results from the NASA BTIO Challenge. The benchmark, BTIO, is a subset of the NAS Parallel benchmark and NASA set up a formidable set of milestones, Read more…

2024 Winter Classic: NASA Mentor Interview

May 2, 2024

The folks at NASA Ames once again did a bang-up job as a mentor for the 2024 Winter Classic. This is the third time they’ve fulfilled this vital function, and their challenges keep getting better and better. In thei Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire