Purdue Engineers Create Probabilistic Computing System to Bridge Gap Between Classical and Quantum

March 11, 2021

WEST LAFAYETTE, Ind., March 11, 2021 — “You see, nature is unpredictable. How do you expect to predict it with a computer?” said American physicist Richard Feynman before computer scientists at a conference in 1981.

Forty years later, Purdue University engineers are building the kind of system that Feynman imagined would overcome the limitations of today’s classical computers by more closely acting like nature: a “probabilistic computer.”

The team believes that a probabilistic computer may sooner solve some of the problems a quantum computer would solve, since it wouldn’t need entirely new hardware or extremely cold temperatures to operate.

On that list of problems to solve more efficiently than with classical computers are optimization problems – the ability to calculate the best solution from a very large number of solutions, such as identifying the best route for goods to travel to market.

In 2019, researchers from Purdue and Tohoku University in Japan demonstrated a probabilistic computer, made of “p-bits,” that is capable of solving optimization problems often targeted for quantum computers, built from qubits.

Purdue University researchers are building a probabilistic computer that could bridge the gap between classical and quantum computing to more efficiently solve problems in areas such as drug research, encryption and cybersecurity, financial services, data analysis and supply chain logistics. (Illustration by Gwen Keraval)

“Classically, probabilities can only be positive numbers. Qubits, on the other hand, seem to be governed by probabilities that can be negative or even complex numbers,” said Supriyo Datta, Purdue’s Thomas Duncan Distinguished Professor of Electrical and Computer Engineering, who led the Purdue team. “But there is a useful subset of problems solvable with qubits that can also be solved with p-bits. You might say that a p-bit is a ‘poor man’s qubit.’”

Progress toward imitating nature

Why resort to an entirely new type of computing? Look no further than the “nature” in a cup of coffee, which quantum computers in development by companies such as Google and IBM have yet to uncrack.

The molecular structure of caffeine is so complex that classical computers can’t perform the calculations needed to fully understand it. This is because caffeine can exist in 1048 different atomic configurations, or “quantum states.” A classical computer, which processes only one quantum state at a time, would need to process many states at once like nature does to capture caffeine.

This hurdle is holding back scientists from not only better understanding caffeine’s behavior, but also from more efficiently solving problems in drug research, encryption and cybersecurity, financial services, data analysis and supply chain logistics.

Each of these areas would be significantly enhanced if computers could factor in more variables and process them at the same time.

Purdue researchers see probabilistic computing as a step from classical computing to quantum computing.

“We could imagine and be perfectly happy, I think,” Feynman had said, “with a probabilistic simulator of a probabilistic nature, in which the machine doesn’t exactly do what nature does, but […] you’d get the corresponding probability with the corresponding accuracy.”

Solving quantum problems without “going quantum”

Like classical computers, a probabilistic computer would be able to store and use information in the form of zeros and ones at room temperature.

And like quantum computers, a probabilistic computer could process multiple states of zeros and ones at once – except that a p-bit would rapidly fluctuate between zero and one (hence, “probabilistic”), whereas a qubit is a superposition of zero and one. On a chip, these fluctuations would be correlated between p-bits but entangled in qubits.

The idea going forward is to tweak commonly used memory technology, devices called magnetic tunneling junctions, to be purposely unstable so that p-bits can fluctuate.

Since demonstrating hardware for a probabilistic computer in 2019 and obtaining a patent through the Purdue Research Foundation Office of Technology Commercialization, the team has also employed existing silicon technology to emulate a probabilistic computer with thousands of p-bits using conventional hardware publicly available through Amazon Web Services.

The researchers have published several papers in the past year on developments toward integrating individual hardware components, modeling how to make the system work on a larger scale and ensuring energy efficiency from the ground up.

“The verdict about the best implementation of a p-bit is not yet out. But we’re showing what works so that we can figure it out along the way,” said Joerg Appenzeller, Purdue’s Barry M. and Patricia L. Epstein Professor Electrical and Computer Engineering.

The university’s probabilistic computing research falls under an initiative called Purdue-P. The initiative is part of Purdue’s Discovery Park Center for Computing Advances by Probabilistic Spin Logic, which is supported by the Semiconductor Research Corp. and the National Science Foundation. The team’s work also has funding from the Defense Advanced Research Projects Agency.

The researchers may be the only ones developing a probabilistic computer in name, but others in the field are developing similar technology using different materials and paradigms.

“As a field, we look at the computing problems we can’t solve yet and think, ‘There’s digital computing, there’s quantum computing – what else is there?’ There are a lot of things out there that you could call ‘probabilistic computing’ from a very high level,” said Kerem Camsari, a former Purdue postdoctoral researcher who continues to collaborate with the group as an assistant professor of electrical and computer engineering at the University of California, Santa Barbara.

About Purdue University

Purdue University is a top public research institution developing practical solutions to today’s toughest challenges. Ranked the No. 5 Most Innovative University in the United States by U.S. News & World Report, Purdue delivers world-changing research and out-of-this-world discovery. Committed to hands-on and online, real-world learning, Purdue offers a transformative education to all. Committed to affordability and accessibility, Purdue has frozen tuition and most fees at 2012-13 levels, enabling more students than ever to graduate debt-free. See how Purdue never stops in the persistent pursuit of the next giant leap at https://purdue.edu/.


Source: Kayla Wiles, Purdue University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of what it is like to orbit and enter a black hole. And yes, it c Read more…

2024 Winter Classic: Meet the Mentors Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the mentor interviews and placed them in this single page round-up. Meet the HPE Mentors The latest installment of the 2024 Winter Classic Studio Update S Read more…

2024 Winter Classic: The Complete Team Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the teams and placed them in this single page round-up. Meet Team Lobo This is the other team from University of New Mexico, since there are two, right? T Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hopes to fill a big software gap with an agreement to acquire R Read more…

2024 Winter Classic: Oak Ridge Score Reveal

May 5, 2024

It’s time to reveal the results from the Oak Ridge competition module, well, it’s actually well past time. My day job and travel schedule have put me way behind, but I am dedicated to getting all this great content o Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Leading Solution Providers

Contributors

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire