HPC Simulations Help Researchers Develop Artificial Sniffer Technology

By Carmen L. Bright

August 27, 2008

From law enforcement to cancer detection, the uncanny ability of dogs to sniff out the earliest signs of danger and disease is receiving ever-increasing attention by researchers — with good reason.

Despite tremendous advances in law enforcement technology, there is still no man-made tool that can detect the presence of explosives quite like a canine’s sophisticated sniffing system. Some experts believe it exceeds the human sense of smell by a factor of at least 10,000 and possibly as much as 100,000. Even in today’s high-tech world, trained dogs are still the best bomb detectors.

In the medical arena, dogs have shown an ability to detect some cancers at their earliest stages, when the possibility for cure is highest. Some studies have documented the ability of dogs to distinguish people with cancers from healthy controls through sniffing their breath or skin with an accuracy between 88 percent and 97 percent.

“The dog’s nose is the gold standard for chemical trace detection,” explains Brent Craven, a researcher with the Gas Dynamics Lab and the Applied Research Lab at Penn State University. Craven and his team, which includes Drs. Gary Settles and Eric Paterson of the Mechanical Engineering Department, are using computer models to study the canine sense of smell to help develop ‘artificial sniffer’ technologies.

“We are trying to figure out what specifically makes dogs so efficient in this area,” says Craven. He has been analyzing the internal aerodynamics and transport phenomena in the canine nose using computational fluid dynamics (CFD). Large parallel simulations on high-performance computers at Penn State with AcuSolve (ACUSIM Software, Inc.) CFD software yield terabytes of data. One challenge has been the inability of visualization software to handle the very large models required for this study.
Artificial Sniffer Technology

“The complexity of the dog’s nose rivals the human lung with its many different branching airways, and it’s essential that we understand exactly how it functions,” says Craven. “Constructing a 3D virtual computer model and running simulations with such a complicated model can require nearly a 100 million cells — not all CFD visualization software can handle such a large data set.”

To meet that challenge, Craven and other researchers at Penn State turned to EnSight Gold scientific visualization software from Computational Engineering International, Inc. The software supports very large models that contain millions or billions of nodes, providing intensive parallel processing and rendering capabilities for applications such as airflow animation. Researchers also used Python scripts to automate the data analysis and visualization.

His artificial sniffer project began three years ago with high-resolution MRI scans of a cadaver dog. Craven then reconstructed those into a virtual computer model of a canine nose and, using experimental sniffing data from live dogs, was able to simulate the airflow through it. The model can steadily inspire, expire, or sniff, so Craven can analyze the fluid dynamics of trace detection in nature’s best sniffer.

“One of the questions we are trying to answer is why dogs sniff so fast,” says Craven. Using the visualization software, they are able to analyze simulation results of their model of a Labrador retriever sniffing at 5 Hz (5 sniffs per second), the nominal sniff frequency of a dog that size. The eventual goal is to create a complete virtual dog’s nose, complete with virtual scent receptors that are located in the back of the nose.

The computer model is able to show the role of the various anatomical structures of the canine nose in respiration and olfaction. These include the nasal vestibule, which filters and distributes inspired air within the nasal cavity, and directs an expired air jet; the respiratory airways, which filter, warm/cool, humidify inspired air, and dehumidify expired air; and the olfactory airways, where chemical trace detection occurs.

Craven credits a multi-disciplinary team involving several universities for the success they have had, including anatomy and physiology faculty Drs. Ed Morrison and Eleanor Josephson from the University of Auburn, bioengineering professor Andrew Webb and Dr. Thomas Neuberger at Penn State, and mechanical engineering faculty Drs. Gary Settles and Eric Paterson. “The scope of the sniffer project encompasses many areas of science and engineering, from anatomy, biology, and even neuroscience to bioengineering, mechanical engineering and chemical engineering,” he explains. “Our modeling and rendering techniques are drawing the interest of researchers in many of these different fields.”

Craven and his colleagues recently published some of their results in the November 2007 issue of The Anatomical Record in an article titled “Reconstruction and Morphometric Analysis of the Nasal Airway of the Dog (Canis familiaris) and Implications Regarding Olfactory Airflow.” Their future efforts are focused on incorporating nostril motion, vapor and particle deposition, and receptor models into their virtual dog’s nose. Experimental validation (MRI velocimetry) of these efforts is also under way.

The ultimate goal of creating an efficient artificial sniffer is not to replace dogs, says Craven, but to complement them in a broad range of applications such as cancer detection, explosives detection, search and rescue, drug interdiction, as well as military applications.

In fact, the Defense Advanced Research Projects Agency is encouraging research organizations with expertise to participate in its new “RealNose” program, designed to build an artificial nose based on the actual olfactory receptors of a real dog that can smell a wide range of chemicals with the same accuracy and reliability.

“There is tremendous potential for artificial sniffer technology. They can be handheld, like ‘dustbusters,’ or they can be mounted on robots for mobility to go out and search for trace chemicals,” Craven says. “As engineers, we can certainly design an artificial nose, but advances in simulation and visualization technology are now making it possible for us to analyze the real thing and to create a true biomimetic design.”

About the Author
 
Carmen L. Bright is a freelance writer and marketing consultant specializing in high-technology business communications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Software Foundation (HPSF). The announcement was made at the ISC Read more…

Nvidia Showcases Work with Quantum Centers at ISC 2024

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC 2024 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire