Gravity Attracts a GigE HPC Cluster

By Michael Feldman

July 1, 2008

Not all supercomputing rides on InfiniBand or proprietary interconnects. For technical applications that decompose neatly into loosely-coupled threads, a big cluster with vanilla Gigabit Ethernet does just fine. The persistence of Ethernet on the TOP500 attests to the interconnect’s continued viability on big clusters. On the latest June list, GigE is being used on 284 of the top systems, which is actually slightly up from the 273 recorded in November 2007. But as clusters scale out into hundreds or even thousands of nodes, Ethernet infrastructure can grow into a complex burden of cables and multi-layer switches.

The top Ethernet system on the TOP500 list — at number 58 — is the new ATLAS cluster at the Max Planck Institute for Gravitational Physics in Germany. Installed earlier this year, the ATLAS system is being used in the Institute’s quest to detect gravitational waves — one of the big prizes remaining in physics. A gravitational wave is a fluctuation in the curvature of space-time that is theorized to occur as the result of cosmic events in the early universe, or more recently, from the extreme gravitational fields generated by neutron stars and black holes. First predicted by Albert Einstein in 1917 as part of his General Theory of Relativity, gravitational waves have never been directly measured. Through the use of large arrays of laser interferometers deployed in the U.S., Italy and Germany, it is hoped that evidence of the elusive wave will be discovered.

Because the effect of gravitational waves are so subtle here on Earth, very large quantities of data must be collected, and enormous computational power must be brought to bear to prove their existence. It is hoped that the ATLAS system will provide a platform to help move this effort forward. The 32.8 teraflop (Linpack) machine is made up of 1,342 single-socket compute nodes, occupying 32 racks.

Each ATLAS compute server has a 2.4 GHz Intel quad-core Xeon processor and communicates with the rest of the system via a 1 Gigabit link to a top-of-rack Woven TRX 100 Ethernet switch, which acts as a GigE aggregator with four 10 GigE uplinks. The uplinks funnel the server data to the 144-port 10 GigE Woven EFX 1000 core switch. Since the configuration is not over-subscribed, non-blocking Ethernet communication is provided for each server.

Because of the amount of data involved in gravitational wave analysis, the ATLAS compute servers are hooked up to 1.3 petabytes of external storage. The storage consists of 42 separate file nodes, 30 of which are GigE-linked servers connected via another TRX 100; the other 12 are 10 GigE-connected Sun Microsystems “Thumper” file servers directly hooked into the EFX 1000 core switch. An additional 500 GB of direct-connected storage is provided on each compute node. The CPU on any server can access the local disk storage on any other server as well as the central storage nodes.

Unlike more tightly-coupled MPI codes, analysis of gravitational wave data is an embarrassingly parallel application that lends itself to a server farm type set up. Each node is involved in very data-intensive computations, but node-to-node communication is minimal. Most of the data communication takes place between the compute nodes and the storage.

Because of the highly parallel nature of the code and the reliance on low latency I/O communications, the more granular, single-socket servers were the best fit for the application. Bruce Allen, director of the Max Planck Institute for Gravitational Physics in Hannover, Germany, who led the specification ATLAS system, determined that even at the computational scale of the ATLAS system, a Gigabit Ethernet interconnect was the logical choice. “Something like InfiniBand or Myrinet would have been overkill for this kind of application,” he said.

What he really liked about Woven’s solution was how well designed and how cost-effective it was, and also how easily it scaled up to the 1,000-plus-node cluster he had in mind. Since the EFX 1000 incorporates 144 10 GigE ports, this single core switch, along with the TRX edge switches, supported compute and storage communication for the entire cluster. Another attraction of the Woven technology is its ability to dynamically determine the optimal path for the data. The vSCALE chip in the switch is constantly monitoring latency of the active and alternative paths in the Ethernet fabric. If it finds an alternative path with lower latency, the hardware redirects traffic to take advantage of the faster route. This is especially advantageous when all the nodes are accessing both central storage and local disks on the other nodes. According to Allen, the Woven hardware was better designed and more flexible than any other Ethernet solution they looked at.

“What is remarkable about the ATLAS cluster is that we were able to take the lead very cost-effectively with a creative combination of more processors at lower clock rates and a higher Ethernet switching efficiency,” explained Allen in a press release on Tuesday. “Woven’s 10 Gigabit Ethernet Fabric switch is able to deliver sustained performance at an impressive 64 percent of the theoretical peak. The HPC Linpack experts we consulted tell us that they have never seen such a high level of Ethernet efficiency on such a large cluster. Without the Woven switch, ATLAS would not be the world’s fastest Ethernet cluster. It’s that simple.”

Allen has also helped develop an even larger system that is being used to process the gravitational wave data. This one is also Ethernet-based, but communicates at sub-GigE speeds. The Einstein@Home project is a distributed grid of personal computers, and like its ATLAS sibling, is used to crunch some of the same laser interferometer data collected from around the world.

According the Allen, the current Einstein grid represents over 150 teraflops of computing power and adds about 2,000 new personal computers each day. Like the larger Folding@Home and SETI@Home projects, Einstein@Home relies on the kindness of strangers to donate spare PC cycles for the advancement of science. And while not as efficient as the Institute’s ATLAS supercomputer, the grid offers a lot of extra capacity for wave calculations. Between ATLAS and Einstein@Home, another mystery of the universe may finally be revealed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Software Foundation (HPSF). The announcement was made at the ISC Read more…

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire