Aurora Workshop Helps Researchers Ramp up Preparations for Exascale Computing

May 20, 2020

May 20, 2020 — The ALCF recently hosted a workshop to help researchers advance code development efforts for Argonne’s upcoming exascale system, Aurora.

Science on day one. That’s the goal for each new supercomputer introduced at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, including its forthcoming exascale system, Aurora.

From left: Intel software engineer Louise Huot, NERSC application performance group lead Jack Deslippe, and Argonne computational scientists William Huhn (standing) and Nichols Romero discuss exascale code development at the ALCF’s recent Aurora workshop. (Image: Argonne National Laboratory)

But how do you prepare for a machine before it is even built?

With Aurora’s 2021 arrival date drawing closer, the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility, has been ramping up its efforts to ready the system and its future users for science in the exascale era.

In late February, the ALCF hosted its third Aurora hands-on workshop in the past year. Around 100 researchers participating in the ALCF’s Aurora Early Science Program (ESP) and DOE’s Exascale Computing Project (ECP) attended the three-day workshop to advance their code and software development efforts for the Intel-Cray system.

“The primary goal of the workshop was to bring project developers together with Intel and Argonne experts for hands-on work with their applications,” said Tim Williams, manager of the Aurora ESP and deputy director of Argonne’s Computational Science Division.

ALCF Director Michael Papka welcomes researchers to a three-day Aurora workshop held at Argonne in late February. (Image: Argonne National Laboratory)

Over the past year, Intel has unveiled new architectural details and tools that are helping researchers to accelerate their preparatory work. Intel’s initial oneAPI beta software toolkit aims to simplify application development across diverse architectures. Existing Intel graphics processing units (GPUs) are helping researchers gain a better understanding of Aurora’s “Ponte Vecchio” GPU architecture, and serve as a development platform.

With access to the early Aurora software development kit (a more frequently updated version of the publicly available oneAPI toolkit) and Intel Iris (Gen9) GPUs through Argonne’s Joint Laboratory for System Evaluation, the workshop attendees had an opportunity to test code performance and functionality using programming models that will be supported on Aurora.

Getting some hands-on time compiling and executing application kernels on Intel GPUs was one of the primary draws for Jack Deslippe, applications performance group lead at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory. Deslippe is the lead developer of BerkeleyGW (a massively parallel simulation package used to compute electron excited-state properties) and co-principal investigator of an Aurora ESP project that will use simulation and machine learning tools to identify new materials for solar cells.

“We succeeded in building and running a couple of central BerkeleyGW C++ kernels on Intel Gen9 GPUs,” said Deslippe, who also serves as the ECP’s application development lead for chemistry and materials science. “In particular, we were able to execute a kernel that utilizes OpenMP offloading to the GPU and verify that correctness and performance is consistent with the fraction of peak FLOPS (floating operations per second) on Gen9 that we anticipate. While this was accomplished for a kernel and not the entire application, the results are very encouraging.”

Argonne physicist Walter Hopkins is leading an ESP project that will use Aurora to run simulations of particle interactions for the ATLAS experiment at CERN’s Large Hadron Collider (LHC). The project, which was originally led by the now-retired Argonne Distinguished Fellow Jimmy Proudfoot, is working to develop exascale workflows, algorithms, and machine learning capabilities to advance the search for new physics discoveries at the LHC.

“The amount of simulation needed for the High-Luminosity LHC (HL-LHC) upgrade will require the power of Aurora and future exascale systems,” Hopkins said. “Accurate and sufficiently large simulation samples will be essential in searches for new physics at the HL-LHC. We also want to prepare ATLAS data to be used for deep learning and hyperparameter optimizations on Aurora.”

Hopkins attended the workshop to learn about the deep learning libraries that will be available on Aurora and to work on porting their fast calorimeter simulation code, FastCaloSim, to Intel GPUs using Data Parallel C++ (DPC++), an extension of C++ that incorporates the SYCL programming model and other new features. He and his colleagues were able to make progress on both fronts.

“We had some valuable discussions on the capabilities of DPC++,” Hopkins said. “It was also very helpful to get prompt feedback on bugs and advice on structuring current and future aspects of our code.”

Several researchers participating in the ALCF’s Aurora Early Science Program and DOE’s Exascale Computing Project attended Argonne’s Aurora workshop to advance their code and software development efforts for the lab’s upcoming exascale system. (Image: Argonne National Laboratory)

Deslippe also appreciated the opportunity to work directly with the Argonne and Intel experts and to hear about the progress that other ESP and ECP teams were making.

“Getting questions answered and bugs fixed in real-time leads to a really productive experience,” Deslippe said. “There is a psychological effect of being surrounded by a group of people with common goals and motivations that inspires you to get as much out of your code as you can.”

Looking ahead, the ALCF will continue its Aurora training efforts with some web-based events in the coming months, including the next installment of its quarterly ESP webinar series in June. The Argonne-Intel Center of Excellence also continues to host Aurora hackathons, with some virtual sessions being planned for 2020. These multi-day collaborative events pair individual ESP teams with Argonne and Intel staff members to further advance efforts to port and optimize applications for Aurora.

About The Argonne Leadership Computing Facility 

The Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility located at Argonne National Laboratory, enables breakthroughs in science and engineering by providing supercomputing resources and expertise to the research community. Supported by DOE’s Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About The U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science


Source: Argonne National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire