Berkeley Lab Unlocks Battery Tech Advancements with AI and Perlmutter Supercomputer

July 17, 2023

July 17, 2023 — In the ongoing quest to develop new battery designs, scientists rely on highly accurate assessment tools so they can understand defects and track performance. Solid-state lithium metal batteries have the potential to revolutionize the energy storage industry by providing safer, longer lasting, and higher performance energy storage solutions than traditional lithium batteries. However, developing stable and efficient solid-state electrolytes that can withstand the demanding operating conditions of batteries remains a significant technical hurdle.

This challenge prompted a team of researchers from Lawrence Berkeley National Laboratory’s Center for Advanced Mathematics for Energy Research Applications (CAMERA) to work with colleagues to develop batteryNET, a deep learning algorithm that enables unprecedented assessment of lithium agglomeration in solid-state lithium metal batteries. An overview of batteryNET, which uses a neural network to track morphologies that appear in batteries over time, was recently featured in a paper published in the Nature Partner Journal (NPJ) Computational Materials.

“The ability of computer vision algorithms like batteryNET to seamlessly transition across scientific domains holds great potential for moving a wide range of research forward,” noted co-author Daniela Ushizima, a staff data scientist at CAMERA who leads CAMERA’s Computer Vision team. Other Berkeley Lab researchers and affiliates who are co-authors on the paper include Jerome Quenum, Dula Parkinson, and former employee David Perlmutter, now at Apple. Additional co-authors include Iryna Zenyuk, Ying Huang, and Andrea Fei-Huei Su of the University of California, Irvine; and Pavel Shevchenko of Argonne National Lab’s Advanced Photon Source.

Quality Control is Key

Unlike traditional lithium-ion batteries that contain a flammable electrolyte, solid-state lithium metal batteries use solid electrolytes to provide a more stable interface with lithium metal, making them less likely to catch fire or explode. They can also store more energy per unit weight or volume than conventional lithium-ion batteries, which could lead to lighter, longer-lasting, and more powerful devices.

“These batteries promise superior performance, but quality control is key to deploying safe designs,” Ushizima said.

One critical element in assessing lithium battery performance and safety, especially through multiple charge and depletion cycles, is to systematically measure the growth of dendritic structures, which can have huge consequences for material properties. During cycling, lithium ions travel back and forth, but due to electrochemical instabilities the lithium becomes less mobile and starts depositing at the surface of one of the electrodes. As these deposits increase, the resulting dendritic structure can penetrate the electrolyte, eventually short-circuiting the battery.

Left: Rendering of semantic segmentation result using multiclass voxel classification enabled by proposed computational tool called batteryNET. Right: Battery cross-section with different phases colored accordingly.

To address this issue, batteryNET leverages residual U-Nets, a hierarchical deep-learning architecture for semantic segmentation – a computer vision task designed to categorize each pixel in an image into a class or object. This allows users to turn high-resolution X-ray micro-computed tomography (micro-CT) data into properties about the electrodes, electrolyte, and lithium distribution that can then be used to inspect batteries for longer duration and safety. batteryNET’s semantic segmentation approach yields an array of measurements about the component’s changes, providing insights that can significantly benefit future battery design, as well as a computational model that generalizes with an unseen dataset, noted Ushizima.

batteryNET also addresses the vanishing gradient problem often found in deep learning: as more layers are added to the neural network, network training gets bogged down in trying to make big decisions from tiny differences in numbers. By introducing residual connections – which provide another path for data to reach latter parts of the neural network by skipping some layers, enabling the flow of information directly from one layer to another – batteryNET helps the network alleviate the degradation of information across deeper layers.

“We have not only a snapshot but the whole evolution of the dendrites during a full cycle, so we can see that, at a certain amount of time and charge, problems start,” said Ushizima. “Detecting and tracking dendrite formations can inform materials scientists about optimal electrode-electrolyte compositions and interactions. What we’re doing now is capturing lithium agglomeration and respective morphologies to track the dendrite growth.”

Leveraging Iterative Training Protocols

For the paper’s study, the researchers used 3D datasets gathered from micro-CT tomography experiments conducted at Berkeley Lab’s Advanced Light Source and Argonne National Lab’s Advanced Photon Source. These datasets were then employed on the Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC) to train artificial intelligence models and identify characteristics vital to improving battery performance. At around 5 gigabytes of data per frame, training the models required considerable computational power and data storage.

“NERSC’s Perlmutter supercomputer was able to handle these large datasets, and the GPUs [Graphics Processing Units] were ideal for this algorithm,” said Ushizima.

Ushizima initially embarked on this research in March 2020 with Zenyuk, director of the National Fuel Cell Research Center at the University of California-Irvine. Zenyuk led the effort to prepare the samples and compile the micro-CT datasets for the project. After much analysis and collaboration, the batteryNET algorithm was designed, trained, validated, tested, and iteratively fine-tuned.

“The incorporation of lithium metal anodes in new designs holds promise for advancing battery technologies,” said Zenyuk. “Studies like the one we reported in NPJ Computational Materials combine state-of-the-art material characterization and computation that are much needed for facilitating the successful implementation of emerging technologies.”

“We envision these deep learning algorithms being further adapted to support materials science investigations, leveraging iterative training protocols and the utilization of multiple GPUs at NERSC,” added Ushizima. “This will enable us to explore diverse areas, from lithium protrusions in batteries to analyzing imperfections in materials for electrolyzers.”

This work received support from the National Science Foundation under CBET Award 1605159 and was supported by projects at Berkeley Lab funded by the U.S. Department of Energy (DOE) ASCR and BES programs, Office of Science, under Contract No. DE-AC02-05CH11231. This research used resources of the Advanced Photon Source (APS), a DOE Office of Science user facility operated for the U.S. DOE Office of Science by Argonne National Laboratory under contract No. DE-AC02-06CH11357. The Advanced Light Source is supported by the Director, U.S. Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-05CH11231. This research used resources from NERSC, a DOE Office of Science user facility located at Lawrence Berkeley National Laboratory.

About Berkeley Lab

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 16 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.


Source: Keri Troutman, Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market analysis that Hyperion Research is planning on rolling out over Read more…

2024 Winter Classic: Meet Team Jackson State

May 3, 2024

This is the second time we’re seeing a team from Jackson State university. The team features two veterans of the 2023 Winter Classic, which should help, but it’s also a team whose members are involved in a lot of oth Read more…

2024 Winter Classic: NASA Results Revealed!

May 2, 2024

In this edition of the Winter Classic Studio Update Show we reveal the results from the NASA BTIO Challenge. The benchmark, BTIO, is a subset of the NAS Parallel benchmark and NASA set up a formidable set of milestones, Read more…

2024 Winter Classic: NASA Mentor Interview

May 2, 2024

The folks at NASA Ames once again did a bang-up job as a mentor for the 2024 Winter Classic. This is the third time they’ve fulfilled this vital function, and their challenges keep getting better and better. In thei Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to deliver practical quantum computing - a race that James Clarke Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire