Cerebras Systems and NETL Set New Compute Milestone

November 18, 2020

LOS ALTOS, Calif., Nov. 18, 2020 — Cerebras Systems, a pioneer in high performance artificial intelligence (AI) compute, today announced record-breaking performance on a scientific compute workload. In collaboration with the Department of Energy’s National Energy Technology Laboratory (NETL), Cerebras demonstrated its CS-1 delivering speeds beyond what either CPUs or GPUs are currently able to achieve. Specifically, the CS-1 was 200 times faster than the Joule Supercomputer on the key workload of Computational Fluid Dynamics (CFD).

“NETL researchers and the Cerebras team collaborated to extend the frontier of what is possible,” said Dr. Brian J. Anderson, Lab Director at NETL. “This work at the intersection of supercomputing and AI will extend our understanding of fundamental scientific phenomena, including combustion and how to make combustion more efficient. Together, NETL and Cerebras are using innovative new computer architectures to further the NETL Mission and benefit the United States.”

The workload under test was to solve a large, sparse, structured system of linear equations. These calculations underpin the modeling of physical phenomena. They are the basis for modeling the movements of fluids and are fundamental in solving problems as diverse as the design of airplane wings, understanding how to burn coal more cleanly in a power plant, and how to better extract oil and gas from an oil field. Researchers from NETL and Cerebras will present their findings at the SC20 Conference, and a paper based on the work can be found on arXiv.

Cerebras CS-1 AI computer

The Joule supercomputer is the 82nd fastest supercomputer in the world as ranked by the TOP 500.org and the 24th fastest in the United States. Costing tens of millions of dollars to build, it contains 84,000 CPU cores, which are spread over dozens of racks and consume 450kw of power. A single Cerebras CS-1 is 26 inches tall, fits in one-third of a rack and is powered by the industry’s only wafer-scale processing engine, Cerebras’ WSE. By bringing together exceptional memory performance with massive bandwidth, low latency interprocessor communication and an architecture optimized for high bandwidth computing, the CS-1 was able to outperform the Joule supercomputer.

The CS-1 was proven 200 times faster than the largest cluster of CPUs that Joule could allocate to the problem of this size — 16,384 CPU cores. Because of the complexity of the problem and the fact it scales poorly, adding additional CPU cores could not accelerate the time to find a solution. In other words, there was no number of CPUs that together could solve this problem in the time achieved by a single CS-1. The same holds true for Graphics Processing Units (GPUs). The CS-1 performed these calculations 10,000 times faster than a GPU. GPUs are not better than CPUs in strong scaling when the size of the problem is fixed. No matter how many CPUs or GPUs are thrown at a fixed size problem, there is a maximum attainable performance.

“Cerebras is proud to extend its work with NETL and produce extraordinary results on one of the foundational workloads in scientific compute,” said Andrew Feldman, co-founder and CEO, Cerebras Systems. “This work opens the door to major breakthroughs in scientific computing performance, as the CS-1, with its wafer-scale engine, overcomes traditional barriers to high achieved performance, enabling real-time and other use cases precluded by the failure of strong scaling. Because of the radical memory and communication acceleration that wafer scale integration creates, we have been able to go far beyond what is possible in a discrete, single chip processor, be it a CPU or a GPU.”

The research was led by Dr. Dirk Van Essendelft, Machine Learning and Data Science Engineer at NETL, and Michael James, Cerebras co-founder and Chief Architect of Advanced Technologies at Cerebras Systems. The results came after months of work and continue the close collaboration between the Department of Energy’s NETL laboratory scientists and Cerebras Systems. In September 2019, the Department of Energy announced its partnership with Cerebras, including deployments with Argonne National Laboratory and Lawrence Livermore National Laboratory.

The Cerebras CS-1 was announced in November 2019 to wide acclaim. It has won numerous awards including Fast Company’s Best World Changing Ideas, IEEE Spectrum’s Emerging Technology Awards, Forbes AI 50 2020, HPC’s Readers’ and Editors’ Choice Awards and CBInsights AI 100 2020. The CS-1 is built around the world’s largest processor, the WSE, which is 56 times larger, has 54 times more cores, 450 times more on-chip memory, 5,788 times more memory bandwidth and 20,833 times more fabric bandwidth than the leading GPU competitor. Depending on workload, from AI to HPC, the CS-1 delivers hundreds or thousands of times more compute than legacy alternatives, and it does so at a fraction of the power draw and space.

For more information on the Cerebras and NETL workload, please visit the Cerebras blog.

About Cerebras Systems

Cerebras Systems is a team of pioneering computer architects, computer scientists, deep learning researchers, and engineers of all types. We have come together to build a new class of computer to accelerate artificial intelligence work by three orders of magnitude beyond the current state of the art. The Cerebras CS-1 is the fastest AI computer in existence. It contains a collection of industry firsts, including the Cerebras Wafer Scale Engine (WSE). The WSE is the largest chip ever built. It contains 1.2 trillion transistors, covers more than 46,225 square millimeters of silicon and contains 400,000 AI optimized compute cores. The largest graphics processor on the market has 54 billion transistors and covers 826 square millimeters and has only 6,912 cores. In artificial intelligence work, large chips process information more quickly producing answers in less time. As a result, neural networks that in the past took months to train, can now train in minutes on the Cerebras WSE.


Source: Cerebras Systems

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

Graphcore and its “Intelligent Processing Units” (IPUs) emerged from stealth in 2016 and launched its second-generation IPU in 2020. While the company has also launched its IPUs in a variety of form factors over the Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat for that approach), announced it was expanding into gate-based Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the power of Fugaku, the current top-ranked supercomputer in the wor Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 537899029

Running GROMACS on GPU instances

Comparing the performance of real applications across different Amazon Elastic Compute Cloud (Amazon EC2) instance types is the best way we’ve found for finding optimal configurations for HPC applications here at AWS. Read more…

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire