Gordon Bell Finalists Fight COVID, Advance Science With NVIDIA Technologies

November 15, 2021

Nov. 15, 2021 — Two simulations of a billion atoms, two fresh insights into how the SARS-CoV-2 virus works, and a new AI model to speed drug discovery.

Those are results from finalists for Gordon Bell awards, considered a Nobel prize in high performance computing. They used AI, accelerated computing or both to advance science with NVIDIA’s technologies.

A finalist for the special prize for COVID-19 research used AI to link multiple simulations, showing at a new level of clarity how the virus replicates inside a host.

The research — led by Arvind Ramanathan, a computational biologist at the Argonne National Laboratory — provides a way to improve the resolution of traditional tools used to explore protein structures. That could provide fresh insights into ways to arrest the spread of a virus.

The team, drawn from a dozen organizations in the U.S. and the U.K., designed a workflow that ran across systems including Perlmutter, an NVIDIA A100-powered system, built by Hewlett Packard Enterprise, and Argonne’s NVIDIA DGX A100 systems.

“The capability to perform multisite data analysis and simulations for integrative biology will be invaluable for making use of large experimental data that are difficult to transfer,” the paper said.

As part of its work, the team developed a technique to speed molecular dynamics research using the popular NAMD program on GPUs. They also leveraged NVIDIA NVLink to speed data “far beyond what is currently possible with a conventional HPC network interconnect, or … PCIe transfers.”

A Billion Atoms in High Fidelity

Ivan Oleynik, a professor of physics at the University of South Florida, led a team named a finalist for the standard Gordon Bell award for their work producing the first highly accurate simulation of a billion atoms. It broke by 23x a record set by a Gordon Bell winner last year.

“It’s a joy to uncover phenomena never seen before, it’s a really big achievement we’re proud of,” said Oleynik.

The simulation of carbon atoms under extreme temperature and pressure could open doors to new energy sources and help describe the makeup of distant planets. It’s especially stunning because the simulation has quantum-level accuracy, faithfully reflecting the forces among the atoms.

“It’s accuracy we could only achieve by applying machine learning techniques on a powerful GPU supercomputer — AI is creating a revolution in how science is done,” said Oleynik.

The team exercised 4,608 IBM Power AC922 servers and 27,900 NVIDIA GPUs on the U.S. Department of Energy’s Summit supercomputer, built by IBM, one of the world’s most powerful supercomputers. It demonstrated their code could scale with almost 100-percent efficiency to simulations of 20 billion atoms or more.

That code is available to any researcher who wants to push the boundaries of materials science.

Inside a Deadly Droplet

The team led by Amaro simulated the Delta SARS-CoV-2 virus in a respiratory droplet with more than a billion atoms. Credit: NVIDIA

In another billion-atom simulation, a second finalist for the COVID-19 prize showed the Delta variant in an airborne droplet (below). It reveals biological forces that spread COVID and other diseases, providing a first atomic-level look at aerosols.

The work has “far reaching … implications for viral binding in the deep lung, and for the study of other airborne pathogens,” according to the paper from a team led by last year’s winner of the special prize, researcher Rommie Amaro from the University of California San Diego.

“We demonstrate how AI coupled to HPC at multiple levels can result in significantly improved effective performance, enabling new ways to understand and interrogate complex biological systems,” Amaro said.

Researchers used NVIDIA GPUs on Summit, the Longhorn supercomputer built by Dell Technologies for the Texas Advanced Computing Center and commercial systems in Oracle’s cloud.

“HPC and cloud resources can be used to significantly drive down time-to-solution for major scientific efforts as well as connect researchers and greatly enable complex collaborative interactions,” the team concluded.

The Language of Drug Discovery

Finalists for the COVID prize at Oak Ridge National Laboratory (ORNL) applied natural language processing (NLP) to the problem of screening chemical compounds for new drugs.

They used a dataset containing 9.6 billion molecules — the largest dataset applied to this task to date — to train in two hours a BERT NLP model that can speed discovery of new drugs. Previous best efforts took four days to train a model using a dataset with 1.1 billion molecules.

The work exercised more than 24,000 NVIDIA GPUs on the Summit supercomputer to deliver a whopping 603 petaflops. Now that the training is done, the model can run on a single GPU to help researchers find chemical compounds that could inhibit COVID and other diseases.

“We have collaborators here who want to apply the model to cancer signaling pathways,” said Jens Glaser, a computational scientist at ORNL.

“We’re just scratching the surface of training data sizes — we hope to use a trillion molecules soon,” said Andrew Blanchard, a research scientist who led the team.

Relying on a Full-Stack Solution

NVIDIA software libraries for AI and accelerated computing helped the team complete its work in what one observer called a surprisingly short time.

“We didn’t need to fully optimize our work for the GPU’s tensor cores because you don’t need specialized code, you can just use the standard stack,” said Glaser.

He summed up what many finalists felt: “Having a chance to be part of meaningful research with potential impact on people’s lives is something that’s very satisfying for a scientist.”

Tune in to our special address at SC21 either live on Monday, Nov. 15 at 3 pm PST or later on demand. NVIDIA’s Marc Hamilton will provide an overview of our latest news, innovations and technologies, followed by a live Q&A panel with NVIDIA experts.


Source: Dion Harris, NVIDIA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical claims. A paper published on July 10 by researchers in the U. Read more…

Belt-Tightening in Store for Most Federal FY25 Science Budets

July 15, 2024

If it’s summer, it’s federal budgeting time, not to mention an election year as well. There’s an excellent summary of the curent state of FY25 efforts reported in AIP’s policy FYI: Science Policy News. Belt-tight Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire