Improved Chip-Scale Color Conversion Lasers Could Enable Many Next Gen Quantum Devices

March 29, 2023

March 29, 2023 — In two new studies, researchers at the National Institute of Standards and Technology (NIST) have greatly improved the efficiency and power output of a series of chip-scale devices that generate laser light at different colors while all using the same input laser source.

Four nanophotonic resonators, each slightly different in geometry, generates different colors of visible light from the same near-infrared pump laser. Credit: NIST.

Many quantum technologies, including miniature optical atomic clocks and future quantum computers, will require simultaneous access to multiple, widely varying laser colors within a small region of space. For instance, up to six different laser colors are needed for all the steps required for a leading atom-based design for quantum computation, including preparing the atoms, cooling them, reading out their energy states, and performing quantum logic operations.

To create multiple laser colors on one chip, NIST researcher Kartik Srinivasan and his colleagues have spent the last few years studying nonlinear optical devices, such as those made of silicon nitride, which have a special property: The color of laser light entering the device can differ from the color that exits. In their experiment, incoming light is converted into two different colors—which correspond to two different frequencies. For instance, near-infrared laser light incident on the material is converted into shorter-wavelength visible laser light (at higher frequency than the source) and longer-wavelength infrared laser light (at lower frequency).

In previous work, the team demonstrated that this conversion process, known as optical parametric oscillation, can occur within a silicon nitride microresonator, a ring-shaped device small enough to be fabricated on a chip. The light races around the ring some 5,000 times, building a high enough intensity for the silicon nitride to convert it into the two different frequencies. The two colors are then coupled  into a straight rectangular channel, also made of silicon nitride, that lies adjacent to the ring and acts as a transmission line, or waveguide, transporting the light where it is needed.

The specific colors generated are determined by the dimensions of the microresonator as well as the color of the input laser light. Because many different microresonators with slightly different dimensions are created during the fabrication process, the technique provides access to a wide range of output colors on a single chip, all using the same input laser.

However, Srinivasan and his colleagues, which include researchers from the Joint Quantum Institute (JQI), a collaboration between NIST and the University of Maryland, found that the process was highly inefficient. Much less than 0.1 percent of the input laser light was converted into either of the two output colors traveling in the waveguide. The team traced most of the inefficiency to poor coupling between the ring and the waveguide.

In the first study, Srinivasan and his NIST/JQI collaborators, led by Jordan Stone, redesigned the straight waveguide so that it was U-shaped and wrapped around a portion of the ring. With this modification, the researchers were able to convert about 15 percent of the incoming light to the desired output colors, more than 150 times the amount in their earlier experiment. In addition, the converted light possessed more than one milliwatt of power over a wide range of wavelengths, from the visible to the near-infrared.

Generating a milliwatt of power is a milestone, said Srinivasan, because that amount is usually enough for several applications. For example, it can enable a tiny laser to excite electrons to jump, or transition, from one specific energy level to another inside an atom. Exciting these transitions is part of common protocols for generating quantum states of light, such as single-photon states, from single atoms or atom-like systems such as quantum dots.

In addition, milliwatt power levels can be sufficient for laser stabilization. Some atoms have transition energies that are very stable and insensitive to environmental effects, and as a result, provide a good reference by which a laser frequency can be compared and corrected, ultimately improving its noise properties.

The researchers reported their results in the December 2, 2022 issue of APL Photonics.

In the second study, Srinivasan and his colleagues, led by Edgar Perez, improved the power output and efficiency of the technique even further. By increasing the coupling between the ring and the waveguide and suppressing effects that may interfere with the color conversion, the team increased the output laser power to as high as 20 milliwatts and converted as much as 29 percent of the incident laser light to the output color. Although the colors in this study were limited to the near-infrared, the team plans to extend their work to visible wavelengths.

The researchers reported their findings in the Jan. 16, 2023 issue of Nature Communications.


Source: NIST

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of what it is like to orbit and enter a black hole. And yes, it c Read more…

2024 Winter Classic: Meet the Mentors Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the mentor interviews and placed them in this single page round-up. Meet the HPE Mentors The latest installment of the 2024 Winter Classic Studio Update S Read more…

2024 Winter Classic: The Complete Team Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the teams and placed them in this single page round-up. Meet Team Lobo This is the other team from University of New Mexico, since there are two, right? T Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hopes to fill a big software gap with an agreement to acquire R Read more…

2024 Winter Classic: Oak Ridge Score Reveal

May 5, 2024

It’s time to reveal the results from the Oak Ridge competition module, well, it’s actually well past time. My day job and travel schedule have put me way behind, but I am dedicated to getting all this great content o Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Leading Solution Providers

Contributors

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire