International Team Reconstructs Nanoscale Virus Features from Correlations of Scattered X-rays

October 13, 2017

Oct. 13, 2017 — As part of an international research team, Jeff Donatelli, Peter Zwart and Kanupriya Pande of the Center for Advanced Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory (Berkeley Lab) contributed key algorithms which helped achieve a goal first proposed more than 40 years ago – using angular correlations of X-ray snapshots from non-crystalline molecules to determine the 3D structure of important biological objects. This technique has the potential to allow scientists to shed light on biological structure and dynamics that were previously impossible to observe with traditional X-ray methods.

The breakthrough resulted from a single-particle diffraction experiment conducted at the Department of Energy’s (DOE’s) Linac Coherent Light Source (LCLS) by the Single-Particle Initiative organized by the SLAC National Accelerator Laboratory.  As part of this initiative, the CAMERA team combined efforts with Ruslan Kurta, a physicist at the European XFEL (X-ray free electron laser) facility in Germany, to analyze angular correlations from the experimental data and use CAMERA’s multi-tiered iterative phasing (M-TIP) algorithm to perform the first successful 3D virus reconstructions from experimental correlations. The results were described in a paper published Oct. 12 in Physical Review Letters.

Reconstructions of a rice dwarf virus (top) and a PR772 bacteriophage (bottom) from experimental correlation data using M-TIP. The images on the right show asymmetries in the internal genetic material for each virus reconstruction. (Image Credit: Jeff Donatelli, Berkeley Lab)

“For the past 40 years, this was considered a problem that could not be solved,” said Peter Zwart, co-author on the paper and a physical bioscientist who is a member of CAMERA based out of the Molecular Biophysics and Integrated Imaging Division at Berkeley Lab. “But it turns out that the mathematical tools that we developed are able to leverage extra information hidden in the problem that had been previously overlooked. It is gratifying to see our theoretical approach lead to a practical tool.”

New Research Opportunities Enabled by XFELs

For much of the last century, the go-to technique for determining high-resolution molecular structure has been X-ray crystallography, where the sample of interest is arranged into a large periodic lattice and exposed to X-rays which scatter off and form diffraction patterns that are collected on a detector. Even though crystallography has been successful at determining many high-resolution structures, it is challenging to use this technique to study structures which are not susceptible to crystallization or structural changes that do not naturally occur within a crystal.

The creation of XFEL facilities, including the Linac Coherent Light Source (LCLS) and the European X-FEL, have created opportunities for conducting new experiments which can overcome the limitations of traditional crystallography. In particular, XFEL beams are several orders of magnitude brighter than and have much shorter pulse lengths than traditional X-ray light sources, which allow them to collect measurable diffraction signal from smaller uncrystallized samples and also study fast dynamics. Single-particle diffraction is one such emerging experimental technique enabled by XFELS, where one collects diffraction images from single molecules instead of crystals. These single-particle techniques can be used to study molecular structure and dynamics that have been difficult to study with traditional imaging techniques.

Overcoming Limitations in Single-Particle Imaging via Angular Correlations

One major challenge of single-particle imaging is that of orientation determination. “In a single-particle experiment, you don’t have control over rotation of the particles as they are hit by the X-ray beam, so each snapshot from a successful hit will contain information about the sample from a different orientation,” said co-author Jeff Donatelli, an applied mathematician in CAMERA who developed many of the algorithms in the new framework. “Most approaches to single-particle analysis have so far been based on trying to determine these particle orientations from the images; however, the best resolution achievable from these analyses is restricted by how precisely these orientations can be determined from noisy data.”

Instead of trying to directly determine these orientations, the team took a different approach based on idea originally proposed in the 1970s by Zvi Kam. “Rather than examine the individual data intensities in an attempt to find the correct orientation for each measured frame, we eliminate this step altogether by using so-called cross-correlation functions,” Kurta said.

This approach, known as fluctuation X-ray scattering, is based on analyzing the angular correlations of ultrashort, intense X-ray pulses scattered from non-crystalline biomolecules. ”The beauty of using correlation data is that it contains a comprehensive fingerprint of the 3D structure of an object that extends traditional solution scattering approaches,” Zwart said.

Reconstructing 3D Structure from Correlations with CAMERA’s M-TIP Algorithm

The team’s breakthrough in reconstructing 3D structure from correlation data was enabled by the multi-tiered iterative phasing (M-TIP) algorithm developed by CAMERA. “Among the prominent advantages of M-TIP is its ability to solve the structure directly from the correlation data without having to rely on any symmetry constraints, and, more importantly, without the need to solve the orientation determination problem,” Donatelli said.

Donatelli, CAMERA director James Sethian and Zwart developed their M-TIP framework by developing a mathematical generalization of a class of algorithms known as iterative phasing techniques, which are used for determining structure in a simpler problem, known as phase retrieval. A paper describing the original M-TIP framework was published August 2015 in the Proceedings of the National Academy of Sciences.

“Advanced correlation analyses in combination with ab-initio reconstructions by M-TIP clearly define an efficient route for structural analysis of nanoscale objects at XFELs,” Zwart said.

Future Directions for Correlation Analysis and M-TIP

The team notes that methods used in this analysis can also be applied to analyze diffraction data when there is more than one particle per shot.

“Most algorithms for single-particle imaging can only handle one molecule at a time, thus limiting signal and resolution. Our approach, on the other hand, is scalable so that we should also be able to measure more than one particle at a time,” said Kurta. Imaging with more than one particle per shot will allow scientists to achieve much higher hit rates, since it is easier to use a wide beam and hit many particles at a time, and will also avoid the need to separate out single-particle hits from multiple-particle hits and blank shots, which is another challenging requirement in traditional single-particle imaging.

As part of CAMERA’s suite of computational tools, they have also developed a different version of M-TIP which solves the orientation problem and can classify the images into conformational states, and consequently can used to study small biological differences in the measured sample. This alternate version of M-TIP was described in a paper published June 26 2017 in the Proceedings of the National Academy of Sciences and is part of a new collaboration initiative between SLAC National Accelerator Laboratory, CAMERA, the National Energy Research Scientific Computing Center (NERSC) and Los Alamos National Laboratory as part of DOE’s Exascale Computing Project (ECP).

This work was supported by the offices of Advanced Scientific Computing Research and Basic Energy Sciences in the Department of Energy’s Office of Science and the National Institute of General Medical Sciences at the National Institutes of Health. LCLS and NERSC are both DOE Office of Science User Facilities.

The Office of Science supports Berkeley Lab. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This