LLNL Scientists Develop Model for More Efficient Simulations of Protein Interactions Linked to Cancer

March 29, 2023

March 29, 2023 — Lawrence Livermore National Laboratory scientists have developed a theoretical model for more efficient molecular-level simulations of cell membranes and their lipid-protein interactions, part of a multi-institutional effort to better understand the behavior of cancer-causing membrane proteins.

Developed under an ongoing collaboration by the Department of Energy (DOE) and the National Cancer Institute (NCI) aimed at modeling cell membrane interactions with RAS — a protein whose mutations are tied to about 30% of human cancers — the new model addresses a major problem in simulating RAS behavior, where conventional methods come up well short of reaching the time- and length-scales needed to observe biological processes of RAS-related cancers. The work appears in the latest issue of the journal Physical Review Research.

 

 

“In order to carry out simulations across greater length and timescales, we developed a continuum model in which one can trade spatial resolution for computational efficiency,” said LLNL staff scientist and co-author Tomas Oppelstrup. “The novelty in this model lies primarily in being able to describe an arbitrary number of lipid species while also being derived directly from microscopic properties of the molecules, which can be computed from direct molecular simulations.”

The new model, based on Dynamic Density Functional Theory (DDFT), enables simulations that can access micron-level length-scales and timescales on the order of seconds, while maintaining resolution close to the current gold standard of molecular dynamics (MD) models. For perspective, these scales are hundreds of times larger in space and many thousands of times longer in time than those accessible with MD.

Co-authors said the publication shows that the DDFT framework is ideal for modeling multi-component cellular membranes as a continuum by incorporating the underlying molecular-level physics in a “rigorous and consistent way.”

“Continuum models in this field have been previously restricted to one or two lipid types and phenomenological descriptions of the lipid interactions,” said first author Liam Stanton, a San Jose State University professor and former staff scientist in LLNL’s Center for Applied Scientific Computing. “The DDFT formalism has provided a pathway of maintaining molecular-scale accuracy for an arbitrary number of lipid types at vastly larger length- and timescales, inaccessible to MD simulations. At these scales, many new processes of biological relevance can be probed, and it will be exciting to see what this new tool will offer to cancer research and other biological communities.”

The macroscopic model described in the paper is a “clever combination of continuum dynamics and particle dynamics, and is constructed directly from finer-scale simulations,” according to Fred Streitz, the project’s principal investigator and the LLNL Computing Directorate’s deputy associate director for strategic partnerships. “The model is capable of describing phenomena like lipid-driven protein aggregation and, because of its efficiency, researchers were able to easily explore the possible space of protein arrangements and their lipid environments.”.

Development of the framework was part of the NCI/DOE Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) Pilot 2 project focused on developing a greater understanding of RAS-RAF-driven cancer initiation and growth by combining machine learning (ML) and the high-performance computing expertise at the DOE national laboratories with the state-of-the-art experimental capability at NCI to study RAS biology on membranes and advance discovery of new cancer drugs.

Under the pilot project, LLNL scientists demonstrated a Multiscale Machine-Learned Modeling Infrastructure (MuMMI) to simulate RAS protein behavior on a realistic cell membrane, as well as how RAS-RAF proteins interact with each other and with the membrane lipids. The goal was to deepen understanding of RAS biology through next-generation experimental data, simulations and predictive models. Researchers envision that simulations of RAS and its interactions with the cell membrane will lead to a better biological knowledge and new insights that will accelerate new treatment options for RAS-related cancers.

The follow-on project, ADMIRRAL (AI-Driven Multiscale Investigation of the RAS/RAF Activation Lifecycle), is extending the substantial capability to model RAS biology developed under Pilot 2 to explore a much longer timescale and to address signal-activation pathways. Machine learning will be used to hypothesize potential configurations along a pathway and then test them, all without human intervention, according to researchers. ADMIRRAL is co-led at LLNL by Streitz and by Cancer Research Technology Program Director Dwight Nissley at the NCI’s Frederick National Laboratory for Cancer Research.

In the future, researchers plan to improve the recently published DDFT model with more accurate anisotropic protein interactions and membrane deformations. Other co-authors included LLNL scientists Tim Carpenter, Helgi Ingolfsson, Mike Surh, Felice Lightstone and Jim Glosli.


Source: LLNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet the Mentors Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the mentor interviews and placed them in this single page round-up. Meet the HPE Mentors The latest installment of the 2024 Winter Classic Studio Update S Read more…

Winter Classic: The Complete Team Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the teams and placed them in this single page round-up. Meet Team Lobo This is the other team from University of New Mexico, since there are two, right? T Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hopes to fill a big software gap with an agreement to acquire R Read more…

2024 Winter Classic: Oak Ridge Score Reveal

May 5, 2024

It’s time to reveal the results from the Oak Ridge competition module, well, it’s actually well past time. My day job and travel schedule have put me way behind, but I am dedicated to getting all this great content o Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market analysis that Hyperion Research is planning on rolling out over Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire