New Method that can Simulate Nanoelectronics Earns Researchers Gordon Bell Prize Nomination

September 18, 2019

September 18, 2019 — Chip manufacturers are already assembling transistors that measure just a few nanometres across. They are much smaller than a human hair, whose diameter is approximately 20,000 nanometres in the case of finer strands. Now, demand for increasingly powerful supercomputers is driving the industry to develop components that are even smaller and yet more powerful at the same time.

Nomination for the Gordon Bell Prize

However, in addition to physical laws that make it harder to build ultra-scaled transistors, the problem of the ever increasing heat dissipation is putting manufacturers in a tricky situation – partly due to steep rises in cooling requirements and the resulting demand for energy. Cooling the computers already accounts for up to 40 percent of power consumption in some data centres, as the research groups led by ETH professors Torsten Hoefler and Mathieu Luisier report in their latest study, which they hope will allow a better approach to be developed. With their study, the researchers are now nominated for the ACM Gordon Bell Prize, the most prestigious prize in the area of supercomputers, which is awarded annually at the SC supercomputing conference in the United States.

To make today’s nanotransistors more efficient, the research group led by Luisier from the Integrated Systems Laboratory (IIS) at ETH Zurich simulates transistors using software named OMEN, which is a so-called quantum transport simulator.  OMEN runs its calculations based on what is known as density functional theory (DFT), allowing a realistic simulation of transistors in atomic resolution and at the quantum mechanical level. This simulation visualises how electrical current flows through the nanotransistor and how the electrons interact with crystal vibrations, thus enabling researchers to precisely identify locations where heat is produced. In turn, OMEN also provides useful clues as to where there is room for improvement.

Improving transistors using optimised simulations

Until now, conventional programming methods and supercomputers only permitted researchers to simulate heat dissipation in transistors consisting of around 1,000 atoms, as data communication between the processors and memory requirements made it impossible to produce a realistic simulation of larger objects. Most computer programs do not spend most of their time performing computing operations, but rather moving data between processors, main memory and external interfaces. According to the scientists, OMEN also suffered from a pronounced bottleneck in communication, which curtailed performance. “The software is already used in the semiconductor industry, but there is considerable room for improvement in terms of its numerical algorithms and parallelisation,” says Luisier.

Until now, the parallelization of OMEN was designed according to the physics of the electro-thermal problem, as Luisier explains. Now, Ph.D. student Alexandros Ziogas and the postdoc Tal Ben-Nun – working under Hoefler, head of the Scalable Parallel Computing Laboratory at ETH Zurich – have not looked at the physics but rather at the dependencies between the data. They reorganised the computing operations according to these dependencies, effectively without considering the underlying physics. In optimising the code, they had the help of two of the most powerful supercomputers in the world – “Piz Daint” at the Swiss National Supercomputing Centre (CSCS) and “Summit” at Oak Ridge National Laboratory in the US, the latter being the fastest supercomputer in the world. According to the researchers, the resulting code – dubbed DaCe OMEN – produced simulation results that were just as precise as those from the original OMEN software.

For the first time, DaCe OMEN has reportedly made it possible for researchers to produce a realistic simulation of transistors ten times the size, made up of 10,000 atoms, on the same number of processors – and up to 14 times faster than the original method took for 1,000 atoms. Overall, DaCe OMEN is more efficient than OMEN by two orders of magnitude: on Summit, it was possible to simulate, among other things, a realistic transistor up to 140 times faster with a sustained performance of 85.45 petaflops per second – and indeed to do so in double precision on 4,560 computer nodes. This extreme boost in computing speed has earned the researchers a nomination for the Gordon Bell Prize.

Data-centric programming

The scientists achieved this optimisation by applying the principles of data-centric parallel programming (DAPP), which was developed by Hoefler’s research group. Here, the aim is to minimise data transport and therefore communication between the processors. “This type of programming allows us to very accurately determine not only where this communication can be improved on various levels of the program, but also how we can tune specific computing-intensive sections, known as computational kernels, within the calculation for a single state,” says Ben-Nun. This multilevel approach makes it possible to optimise an application without having to rewrite it every time. Data movements are also optimised without modifying the original calculation – and for any desired computer architecture. “When we optimise the code for the target architecture, we’re now only changing it from the perspective of the performance engineer, and not that of the programmer – that is, the researcher who translates the scientific problem into code,” says Hoefler. This, he says, leads to the establishment of a very simple interface between computer scientists and interdisciplinary programmers.

The application of DaCe OMEN has shown that the most heat is generated near the end of the nanotransistor channel and revealed how it spreads from there and affects the whole system. The scientists are convinced that the new process for simulating electronic components of this kind has a variety of potential applications. One example is in the production of lithium batteries, which can lead to some unpleasant surprises when they overheat.

Data-centric programming is an approach that ETH Professor Torsten Hoefler has been pursuing for a number of years with a goal of putting the power of supercomputers to more efficient use. In 2015, Hoefler received an ERC Starting Grant for his project, Data Centric Parallel Programming (DAPP).

Reference:

Ziogas AN, Ben-Nun T, FernándezGI, Schneider T, Luisier M & Hoefler T: A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport Simulations, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC19), November 2019.


Source: Simone Ulmer, CSCS – Swiss National Supercomputing Centre

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This