New Pitt Supercomputer to Launch Into Space

May 1, 2019

PITTSBURGH, Pa., May 1, 2019 — A novel supercomputer developed by a University of Pittsburgh team is set to journey to the International Space Station on Friday, continuing a NASA partnership meant to improve Earth and space science.

It will be “one of the most powerful space-qualified computers ever made and flown,” said Alan George, department chair of the Swanson School of Engineering’s Department of Electrical and Computer Engineering, who led Pitt researchers and graduate students on the project.

On the space station, the supercomputer will serve as a research “sandbox” for space-based experiments on computing, sensing, image processing and machine learning. Researchers said the main objective of these experiments is progression toward autonomous spacecraft, like a more advanced version of the self-driving cars seen in Pittsburgh.

This radiation-tolerant computer cluster, called the Spacecraft Supercomputing for Image and Video Processing (SSIVP) system, is part of the U.S. Department of Defense Space Test Program-Houston 6 mission (STP-H6), developed at the National Science Foundation Center for Space, High-performance, and Resilient Computing (SHREC).

The system “features an unprecedented combination of high performance, high reliability, low power and reconfigurability for computing in the harsh environment of space, going beyond the capabilities of previous space computers,” said George, who’s also founder and director of SHREC.

The project carries over from time’s spent with the University of Florida prior to moving to Pitt in 2017, when a pair of space computers developed by Pitt students and faculty was sent aboard the space station.

NASA’s Orbiting Carbon Observatory-3 (OCO-3) and Space Test Program-Houston 6 (STP-H6) are in view installed in the truck of SpaceX’s Dragon spacecraft inside the SpaceX facility at NASA’s Kennedy Space Center in Florida on March 23, 2019. OCO-3 and STP-H6 will be delivered to the International Space Station on SpaceX’s 17th Commercial Resupply Services mission (CRS-17) for NASA. STP-H6 is an x-ray communication investigation that will be used to perform a space-based demonstration of a new technology for generating beams of modulated x-rays. This technology may be useful for providing efficient communication to deep space probes, or communicating with hypersonic vehicles where plasma sheaths prevent traditional radio communications. OCO-3 will be robotically installed on the exterior of the space station’s Japanese Experiment Module Exposed Facility Unit, where it will measure and map carbon dioxide from space to provide further understanding of the relationship between carbon and climate. CRS-17 is scheduled to launch from Space Launch Complex 40 on Cape Canaveral Air Force Station in late April.

Last year, the new space supercomputer embarked on a 1,400-mile land-based journey for rigorous testing, from NASA Goddard Space Flight Center in Greenbelt, Maryland, to the NASA Johnson Space Flight Center in Houston to the NASA Langley Research Center in Hampton, Virginia. Its final, much shorter and more meaningful trip will see it travel 250 miles skyward from NASA Kennedy Space Center in Cape Canaveral, Florida, to the space station with the SpaceX-17 mission on a Falcon 9 SpaceX rocket.

Super powered

The new space supercomputer is more than 2.5 times more powerful than its predecessor, which was launched to the space station with STP-H5 on SpaceX-10 in February 2017. It includes dual high-resolution cameras capable of snapping 5-megapixel images of Earth, for detailed aerial shots like the city of Pittsburgh, all in a system about the size of a breadbox.

The H5 system will remain on the space station, working separately from the soon-to-be-launched H6 system on a dynamic set of space technology experiments until at least 2021. The H6 system is expected to be in service for three to four years after launch.

The large amounts of data the new system captures will pose their own challenge.

“There are limitations in communications between ground and spacecraft, so we’re trying to circumvent these limitations with high-performance onboard data processing to more quickly transfer data,” said Sebastian Sabogal, a third-year PhD student studying electrical and computer engineering. “We also want our systems to be highly responsive to processed sensor data to enable spacecraft autonomy, which would reduce the amount of human interaction needed to operate the spacecraft and interpret data.”

“Everyone in the space community wants to build sensor systems that are more powerful and autonomous,” George said. “We must process the data where it’s gathered, which requires very powerful computers, but space is the most challenging place to build and deploy powerful computers.”

Space, too, is a challenging place for computers to thrive due to high fluctuations in temperatures, strong vibrations during launch and higher levels of radiation — all of which can affect performance, said Sabogal.

During its time in space, the supercomputer will gather and monitor data on weather patterns, deforestation, and the effects of natural disasters on Earth and the effects of space and radiation on electronic devices, among many applications in Earth and space science.

A goldmine for students

SHREC also is collaborating for the first time with the Swanson School of Engineering’s Department of Mechanical Engineering and Materials Science, with the latter designing, assembling and testing the system chassis to meet the structural requirements from NASA for the computing system.

For students, these space missions are an opportunity to hone their engineering expertise and interact closely with experts at NASA and the U.S. Department of Defense.

The Spacecraft Supercomputing for Image and Video Processing marks the first known instance of the “Pitt Script” in space. (Courtesy of Alan George)

“When I initially came in, it was one of the big projects going on here,” said Evan Gretok, a second-year PhD student studying electrical and computer engineering. “I was asked if I was up for a challenge, and I was put on developing some of the flight software for some of the secondary objectives of the mission.”

These secondary objectives include studies regarding flight services, hardware configuration and studies on image processing.

Gretok also earned his master’s degree in the same field at Pitt this year, and he has been working with the NASA Marshall Space Flight Center in Huntsville, Alabama, to certify the supercomputer’s ground-station software for mission operations that will be controlled by Pitt researchers in the SHREC lab meets NASA standards.

“It’s really humbling to be part of a team that has this kind of access to such innovative technology,” Gretok said. “The amount of opportunities that open up for Earth observation for data analytics and for these students to develop their own applications and algorithms is exciting to see.”

Other leading researchers for the project include Matthew Barry, an assistant professor of mechanical engineering and materials science, who also works with the Center for Research Computingand was in charge of thermal modeling for the computer, and David Schmidt, an associate professor of mechanical engineering and materials science, whose team was in charge of the design and construction of the aluminum chassis to house the electronics, ensuring that it meets NASA specifications.

For more information on the mission visit NASA’s missions page.


Source: University of Pittsburgh

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire